汽车工程 ›› 2021, Vol. 43 ›› Issue (9): 1383-1393.doi: 10.19562/j.chinasae.qcgc.2021.09.016

• • 上一篇    下一篇

多轮分布式电驱动车辆双重转向分层控制系统设计

陈路明,廖自力(),张征   

  1. 陆军装甲兵学院兵器与控制系,北京 100072
  • 收稿日期:2020-09-20 出版日期:2021-09-25 发布日期:2021-09-26
  • 通讯作者: 廖自力 E-mail:zili_liao@163.com
  • 基金资助:
    国家自然科学基金(51507190);军队武器装备预先研究项目(301051102)

Design of Hierarchical Control System for Dual⁃steering of Multi⁃wheel Distributed Electric Drive Vehicles

Luming Chen,Zili Liao(),Zheng Zhang   

  1. Department of Weapons and Control Engineering,Army Academy of Armored Forces,Beijing 100072
  • Received:2020-09-20 Online:2021-09-25 Published:2021-09-26
  • Contact: Zili Liao E-mail:zili_liao@163.com

摘要:

为了提高多轮分布式电驱动车辆在复杂机动环境下的转向能力,设计了一种基于直接横摆力矩控制的双重转向系统。该控制系统采用分层结构,上层为横摆力矩决策层,下层为驱动力分配层。在控制系统上层,基于无迹卡尔曼滤波和递归最小二乘结合算法进行路面辨识;根据车辆状态信息和路面条件自适应调节滑移转向比,由车辆动力学模型和滑移转向比确定双重转向参考模型;针对滑模面附近非连续特性造成的控制信号抖动现象,将滑模控制算法进行改进,设计了滑模条件积分控制器,使车辆实际横摆角速度追踪双重转向参考模型计算出期望横摆角速度。系统下层在保证车辆总驱动力的前提下,基于控制分配规则将上层广义目标控制力需求分配至各执行器。最后,利用硬件在环实时仿真平台进行控制策略验证。结果表明,分层控制系统较好地实现了路面识别功能和车辆双重转向功能,针对不同路面工况对车辆进行了有效地行驶控制,减小了车辆在狭小弯曲地区的转弯半径,抑制了车辆状态参数及电机转矩的颤振和抖动,改善了车辆小半径行驶的转向机动性和高速行驶稳定性。

关键词: 轮毂电机, 路面识别, 直接横摆力矩控制, 滑模条件积分控制, 双重转向

Abstract:

To enhance the steering ability of multi?wheel distributed electric drive vehicles in a complex maneuvering environment, a dual?steering system based on direct yaw moment control is designed. The control system adopts a hierarchical structure, with the yaw moment decision layer as the upper layer and driving force distribution layer as the lower layer. In the upper layer of the control system, the road surface is identified based on unscented Kalman filter and recursive least square algorithm. The slip steering ratio is adaptively adjusted according to the vehicle state information and road conditions. Then the dual?steering reference model is determined by the vehicle dynamics model and slip steering ratio. For the control signal jitter caused by the discontinuous characteristics near the sliding surface, the sliding mode control algorithm is improved and the sliding mode conditional integral controller is designed to make the actual yaw rate track the desired yaw rate calculated by the dual steering reference model. In the lower layer of the control system, on the premise of ensuring the vehicle’s total driving force, the generalized target control force demand of the upper layer is allocated to each actuator according to the control allocation rules. The hardware?in?the?loop real?time simulation platform is used to verify the control strategy. The results show that the hierarchical control system can achieve the function of road recognition and vehicle dual?steering well. It can control the vehicle effectively according to different road conditions, reduce the turning radius of the vehicle in the narrow curve area, restrain the chatter and jitter of the vehicle state parameters and motor torque, and improve the steering mobility and high?speed driving stability of the vehicle in small radius driving.

Key words: hub motor, road identification, direct yaw moment control, sliding mode control with conditional integrator, dual?steering control