汽车工程 ›› 2022, Vol. 44 ›› Issue (5): 656-663.doi: 10.19562/j.chinasae.qcgc.2022.05.002

所属专题: 智能网联汽车技术专题-规划&控制2022年

• • 上一篇    下一篇

考虑路径平滑性和避撞稳定性的智能汽车弯道轨迹规划研究

余嘉星1,2,Aliasghar Arab2,裴晓飞1(),过学迅1   

  1. 1.湖北省汽车零部件重点实验室,武汉理工大学,武汉  430070
    2.罗格斯大学机械与航空航天工程系,新泽西,皮斯卡塔韦 ;08854 美国
  • 收稿日期:2021-12-14 修回日期:2021-12-28 出版日期:2022-05-25 发布日期:2022-05-27
  • 通讯作者: 裴晓飞 E-mail:peixiaofei7@whut.edu.cn
  • 基金资助:
    湖北省技术创新重大专项(2020DEB014);现代汽车零部件技术湖北省重点实验室开放基金(XDQCKF2021009)

Research on Cornering Trajectory Planning for Intelligent Vehicle Considering Trajectory Smoothness and Stability for Collision Avoidance

Jiaxing Yu1,2,Arab Aliasghar2,Xiaofei Pei1(),Xuexun Guo1   

  1. 1.The Hubei Key Laboratory of Advanced Technology of Automotive Components,Wuhan University of Technology,Wuhan  430070
    2.The Department of Mechanical and Aerospace Engineering,Rutgers University,Piscataway,NJ 08854 USA
  • Received:2021-12-14 Revised:2021-12-28 Online:2022-05-25 Published:2022-05-27
  • Contact: Xiaofei Pei E-mail:peixiaofei7@whut.edu.cn

摘要:

针对智能汽车弯道避障问题,提出了一种兼顾规划曲线平滑度和车辆稳定性的轨迹规划方法。将轨迹规划分为解耦的路径规划和速度规划处理,利用改进的快速随机搜索树(RRT)构建曲率连续且曲率变化量最小的无碰撞的螺旋线路径。改进后的RRT基于深度神经网络的度量函数,选取并连接代价函数最小的树节点,并通过搜索附近节点寻找是否存在代价函数更小的节点。而在速度规划中首先根据道路限速规则,采用梯形规划输出连续的目标加速度曲线。然后基于螺旋线路径曲率和自车状态,采用预瞄加速度矢量控制(PGVC)动态调整目标加速度,最后通过加速度控制逻辑获得最终的期望加速度。仿真结果表明,所提出的轨迹规划方法不仅能使智能汽车满足弯道避撞和路径跟踪的目标要求,且提高了车辆高速过弯的稳定性能,同时本文还验证RRT的快速收敛性质、路径平滑性和基于并行计算的实时性。

关键词: 智能汽车, 轨迹规划, 快速随机搜索树, 速度规划, 弯道避撞

Abstract:

A trajectory planning is proposed for collision avoidance in a corner of intelligent vehicle considering trajectory smoothness and vehicle stability. The trajectory planning is decomposed into path planning and speed planning. The improved rapidly exploring random tree (RRT) is used to construct a collision-free continuous-curvature clothoids with minimum curvature change. Based on the measurement function of deep neural network, the improved RRT selects and connects the tree nodes with the smallest cost function, and searches the nearby nodes to find whether there are nodes with smaller cost function near the selected nodes. In speed planning, trapezoidal velocity profiles are used to output continuous target acceleration curve according to the road speed limit rules. Then, based on the curvature of clothoids and vehicle state, the target acceleration is dynamically adjusted by Preview G-Vectoring control (PGVC). Finally, the final expected acceleration is obtained through acceleration control logic. The simulation results show that the proposed trajectory planning method can not only achieve collision avoidance in a corner and guarantee a good tracking performance, but also improve the stability in a corner at high speed. Besides, the paper also verifies the fast convergence, path smoothness and real-time performance based on parallel computing of RRT.

Key words: intelligent vehicle, trajectory planning, rapidly exploring random tree, speed planning, cornering collision avoidance