汽车工程 ›› 2019, Vol. 41 ›› Issue (5): 571-581.doi: 10.19562/j.chinasae.qcgc.2019.05.014
朱建功1,2, 孙泽昌1, 魏学哲1, 戴海峰1, 房乔华1, 唐轩1
收稿日期:
2018-04-24
发布日期:
2019-06-05
通讯作者:
朱建功,博士,E-mail:zhujiangong@tongji.edu.cn
基金资助:
Zhu Jiangong1,2, Sun Zechang1, Wei Xuezhe1, Dai Haifeng1, Fang Qiaohua1, Tang Xuan1
Received:
2018-04-24
Published:
2019-06-05
摘要: 鉴于低温条件下动力电池功率特性变差,充放电效率下降,制约了电动汽车的发展,一方面通过对不同规格、不同材料体系的动力电池进行低温放电、充电、交流阻抗谱特性测试,分析制约锂离子动力电池低温性能的关键因素;另一方面,从动力电池热管理角度出发,对目前低温加热技术的研究进展进行综述,旨在为改善动力电池低温性能和对动力电池低温热管理技术的进一步研究提供指导。
朱建功, 孙泽昌, 魏学哲, 戴海峰, 房乔华, 唐轩. 车用锂离子电池低温特性与加热方法研究进展*[J]. 汽车工程, 2019, 41(5): 571-581.
Zhu Jiangong, Sun Zechang, Wei Xuezhe, Dai Haifeng, Fang Qiaohua, Tang Xuan. Research Progress on Low-temperature Characteristics and HeatingTechniques of Vehicle Lithium-ion Battery[J]. Automotive Engineering, 2019, 41(5): 571-581.
[1] BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources,2018,382:176-178. [2] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226:272-288. [3] HARKS P P R M L, MULDER F M, NOTTEN P H L. In situ methods for Li-ion battery research: a review of recent developments[J]. Journal of Power Sources,2015,288:92-105. [4] 雷治国,张承宁,李军求,等.电动车用锂离子电池低温性能研究[J].汽车工程,2013,35(10):927-933. [5] CHO H M, CHOI W S, GO J Y, et al. A study on time-dependent low temperature power performance of a lithium-ion battery[J]. Journal of Power Sources,2012,198:273-280. [6] PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-a low-temperature aging study[J]. Journal of Power Sources,2015,275:799-807. [7] ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-Ion batteries[J]. Electrochimica Acta,2004,49(7):1057-1061. [8] ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta,2002,48(3):241-246. [9] LI S, LI X, LIU J, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics,2014,21(4):901-907. [10] SENYSHYN A, MÜHLBAUER M J, DOLOTKO O, et al. Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite[J]. Journal of Power Sources,2015,282:235-240. [11] BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources,2014,262:297-302. [12] LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources,2014,245:208-216. [13] UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources,2015,279:428-438. [14] ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources,2014,271:152-159. [15] ZHANG S, XU K, JOW T. Charge and discharge characteristics of a commercial LiCoO 2-based 18650 Li-ion battery[J]. Journal of Power Sources,2006,160(2):1403-1409. [16] FAN J. On the discharge capability and its limiting factors of commercial 18650 Li-ion cell at low temperatures[J]. Journal of Power Sources,2003,117(1):170-178. [17] ZHAO H, DUAN Y L, GE G L, et al. Study on performance of low temperature type lithium ion battery[J]. Chinese Journal of Power Sources,2009,1:019. [18] 雷治国,张承宁,董玉刚,等.电动汽车用锂离子电池低温性能和加热方法[J].北京工业大学学报,2013,39(9):1400-1404. [19] 霍宇涛,饶中浩,赵佳腾,等.低温环境下电池热管理研究进展[J].新能源进展,2015,3(1):53-58. [20] 谢晓华,张建,李佳,等.磷酸铁锂电池低温性能的研究[J].华南师范大学学报:自然科学版,2009,2009(S2):113-114. [21] ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta,2006,51(8-9):1636-1640. [22] GOMEZ J, NELSON R, KALU E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: thermal and state of charge effects[J]. Journal of Power Sources,2011,196(10):4826-4831. [23] ORAZEM M E, TRIBOLLET B. Electrochemical impedance spectroscopy[M]. John Wiley & Sons,2011. [24] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002. [25] CIUCCI F, LAI W. Electrochemical impedance spectroscopy of phase transition materials[J]. Electrochimica Acta,2012,81:205-216. [26] GABERSCEK M, JAMNIK J. Impact of electrochemical wiring topology on the kinetics of insertion electrodes[J]. Solid State Ionics,2006,177(26-32):2647-2651. [27] GABERSCEK M, MOSKON J, ERJAVEC B, et al. The importance of interphase contacts in Li Ion electrodes: the meaning of the high-frequency impedance arc[J]. Electrochemical and Solid-State Letters,2008,11(10):A170. [28] SCHMIDT J P, CHROBAK T, ENDER M, et al. Studies on LiFePO4 as cathode material using impedance spectroscopy[J]. Journal of Power Sources,2011,196(12):5342-5348. [29] BAI S J, SONG Y S. Correlation between internal structure and electrochemical impedance spectroscopy of multiphase slurry systems[J]. Anal Chem,2013,85(8):3918-3925. [30] LOHMANN N, WEBKAMP P, HAUBMANN P, et al. Electrochemical impedance spectroscopy for lithium-ion cells: test equipment and procedures for aging and fast characterization in time and frequency domain[J]. Journal of Power Sources,2015,273:613-623. [31] BOUKAMP B. Electrochemical impedance spectroscopy in solid state ionics: recent advances[J]. Solid State Ionics,2004,169(1-4):65-73. [32] LI S E, WANG B, PENG H, et al. An electrochemistry-based impedance model for lithium-ion batteries[J]. Journal of Power Sources,2014,258:9-18. [33] HARADA T, TANAKA J I, NAKAZAWA A, et al. AC impedance spectroscopy of lithium-ion secondary cell exposed to elevated temperature[J]. Electrochemistry,2010,78(5):435-437. [34] XIAO M, CHOE S Y. Impedance model of lithium ion polymer battery considering temperature effects based on electrochemical principle: part I for high frequency[J]. Journal of Power Sources,2015,277:403-415. [35] XIE Y, LI J, YUAN C. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling[J]. Electrochimica Acta,2014,127:266-275. [36] GABERSCEK M, DOMINKO R, JAMNIK J. The meaning of impedance measurements of LiFePO4 cathodes: a linearity study[J]. Journal of Power Sources,2007,174(2):944-948. [37] MALIK R, ABDELLAHI A, CEDER G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes[J]. Journal of the Electrochemical Society,2013,160(5):A3179-A3197. [38] DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society,1996,143(6):1890-1903. [39] NEWMAN J, THOMAS-ALYEA K E. Electrochemical systems[M]. John Wiley & Sons,2012. [40] NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. Aiche Journal,1975,21(1):25-41. [41] ABRAHAM D, HEATON J, KANG S H, et al. Investigating the low-temperature impedance increase of lithium-ion cells[J]. Journal of The Electrochemical Society,2008,155(1):A41-A47. [42] PESARAN A, VLAHINOS A, STUART T. Cooling and preheating of batteries in hybrid electric vehicles[C]. 6th ASME-JSME Thermal Engineering Joint Conference,2003. [43] 胡立新,王超,陈晓琴,等.锂离子电池电解液低温性能的研究[J].化工新型材料,2011,39(7):62-64. [44] JI Y, ZHANG Y, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of The Electrochemical Society, 2013,160(4):A636-A649. [45] LI J, YUAN C F, GUO Z H, et al. Limiting factors for low-temperature performance of electrolytes in LiFePO 4/Li and graphite/Li half cells[J]. Electrochimica Acta,2012,59:69-74. [46] QIAO Y, TU J, WANG X, et al. The low and high temperature electrochemical performances of Li3V2(PO4)3/C cathode material for Li-ion batteries[J]. Journal of Power Sources,2012,199:287-292. [47] 王洪伟,杜春雨,王常波.锂离子电池的低温性能研究[J].电池,2009,39(4):208-210. [48] NAGASUBRAMANIAN G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of Applied Electrochemistry,2001,31(1):99-104. [49] ZHANG S, XU K, JOW T. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications,2002,4(11):928-932. [50] ZHANG S, XU K, JOW T. An inorganic composite membrane as the separator of Li-ion batteries[J]. Journal of Power Sources,2005,140(2):361-364. [51] ZHANG S, XU K, JOW T. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta,2002,48(3):241-246. [52] ZHANG S, XU K, JOW T. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta,2004,49(7):1057-1061. [53] ZHANG S, XU K, JOW T. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources,2003,115(1):137-140. [54] FAN J, TAN S. Studies on charging lithium-ion cells at low temperatures[J]. Journal of the Electrochemical Society,2006,153(6):A1081-A1092. [55] HARRIS V, MILLER R L. Vehicle heating and cooling system: U.S. Patent 4,280,330[P]. 1981-7-28. https://patents.google.com/patent/US4280330A/en. [56] SONG H S, JEONG J B, LEE B H, et al. Experimental study on the effects of pre-heating a battery in a low-temperature environment[C]. 2012 IEEE Vehicle Power and Propulsion Conference,2012:1198-1201. [57] 万向电动汽车有限公司.一种电动大巴车用电源Pack: CN104037365A[P].2014-09-10.http://epub.sipo.gov.cn. [58] 清华大学.一种基于车载天然气供能的动力电池热管理系统:CN104733802A[P].2015-06-24.http://epub.sipo.gov.cn. [59] ZHANG X, KONG X, LI G, et al. Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J]. Energy,2014,64:1092-1101. [60] FURMAN G R. Automotive battery heating system: U.S. Patent 2,440,369[P].1948-4-27.https://patents.google.com/patent/US2440369A/en. [61] MALECEK E L. Battery heating device and method: U.S. Patent 5,731,568[P]. 1998-3-24.https://patents.google.com/patent/US5731568A/en. [62] GODARD P, PREVOT C. Method and device for charging and heating at low temperature a sealed storage cell battery: U.S. Patent 4,025,861[P].1977-5-24.https://patents.google.com/patent/US4025861A/en. [63] KAMENOFF R. Self-heating battery that automatically adjusts its heat setting: U.S. Patent Application 11/178,985[P]. 2006-1-19.https://patents.google.com/patent/US20060012342A1/en. [64] WILMER K. Battery heater: U.S. Patent 2,611,853[P].1952-9-23.https://patents.google.com/patent/US2611853A/en. [65] MCCALL D J. Battery warmer with timer switch: U.S. Patent 5,994,669[P].1999-11-30.https://patents.google.com/patent/US5994669A/en. [66] 王发成,张俊智,王丽芳.车载动力电池组用空气电加热装置设计[J].电源技术,2013,37(7):1184-1187. [67] 比亚迪股份有限公司.混合动力汽车、混合动力汽车的动力系统及电池加热方法:CN103419614A[P].2013-12-04. http://epub.sipo.gov.cn. [68] 马骁.电动汽车锂离子电池温度特性与加热管理系统研究[D].北京:北京理工大学,2010:47-52. [69] 张承宁,雷治国,董玉刚.电动汽车锂离子电池低温加热方法研究[J].北京理工大学学报,2012,32(9):921-925. [70] LAURENZI S, CASINI A, POCCI D. Design and fabrication of a helicopter unitized structure using resin transfer moulding[J]. Composites Part A: Applied Science and Manufacturing,2014,67:221-232. [71] RAO Z H, WANG S F, ZHANG Y L. Simulation of heat dissipation with phase change material for cylindrical power battery[J]. Journal of the Energy Institute,2012,85(1):38-43. [72] KHATEEB S A, FARID M M, SELMAN J R, et al. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J]. Journal of Power Sources,2004,128(2):292-307. [73] LIN C, XU S, CHANG G, et al. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Journal of Power Sources,2015,275:742-749. [74] DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer,2010,53(23):5176-5182. [75] RAO Z, WANG S, ZHANG G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management,2011,52(12):3408-3414. [76] ALAOUI C, SALAMEH Z M. Solid state heater cooler: design and evaluation[C]. Power Engineering,2001.LESCOPE'01.2001 Large Engineering Systems Conference,2001:139-145. [77] ALAOUI C, SALAMEH Z M. A novel thermal management for electric and hybrid vehicles[J]. IEEE Transactions on Vehicular Technology,2005,54(2):468-476. [78] SALAMEH Z, ALAOUI C. Modeling and simulation of a thermal management system for electric vehicles[C]. Industrial Electronics Society,2003.IECON'03.The 29th Annual Conference of the IEEE,2003:887-890. [79] 姚寿广,马哲树,罗林,等.电子电器设备中高效热管散热技术的研究现状及发展[J].华东船舶工业学院学报:自然科学版,2003,17(4):9-12. [80] KRAS B, AEBI A. Improvement of low temperature performance of SAM EV-II Li-ion battery pack by applying active thermal management based on Peltier elements[C]. Proceedings of the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Shenzhen,2010:1-5. [81] 卢高庆,韩海伦,杨德轩,等.基于半导体制冷技术的动力电池箱热管理应用研究[J].电子世界,2014(3):186-188. [82] 北京工业大学.混合动力电动汽车电池加热综合利用装置:CN101537787B[P].2011-11-30.http://epub.sipo.gov.cn. [83] TULLY T E. Battery warmer: U.S. Patent 3,156,813[P].1964-11-10.https://patents.google.com/patent/US3156813A/en. [84] TAJIRI A, HOTTA Y, ISHIKAWA M, et al. Battery temperature control system in electric automobile: U.S. Patent 5,490,572[P]. 1996-2-13.https://patents.google.com/patent/US5490572A/en. [85] CHEN P, LU Z, JI L, et al. Design of the control scheme of power battery low temperature charging heating based on the real vehicle applications[C].2013 IEEE Vehicle Power and Propulsion Conference(VPPC),2013:1-6. [86] WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature,2016,529(7587):515-518. [87] JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta,2013,107:664-674. [88] ASHTIANI C N. Heating of batteries using reactive power: U.S. Patent 7,382,102[P].2008-6-3.https://patents.google.com/patent/US7382102B2/en. [89] ASHTIANI C N, STUART T A. Battery self-warming mechanism using the inverter and the battery main disconnect circuitry: U.S. Patent 6,882,061[P].2005-4-19.https://patents.google.com/patent/US6882061B1/en. [90] ASHTIANI C N, STUART T A. Efficient resonant self-heating battery electric circuit: U.S. Patent 6,072,301[P].2000-6-6.https://patents.google.com/patent/US6072301A/en. [91] CARKNER S. Self heating battery system: U.S. Patent 9,083,065[P].2015-7-14.https://patents.google.com/patent/US9083065B2/en. [92] HANDE A. Internal battery temperature estimation using series battery resistance measurements during cold temperatures[J]. Journal of Power Sources,2006,158(2):1039-1046. [93] HANDE A. A high frequency inverter for cold temperature battery heating[C]. Computers in Power Electronics,2004.Proceedings.2004 IEEE Workshop,2004:215-222. [94] HANDE A, STUART T. AC heating for EV/HEV batteries[C]. Power Electronics in Transportation,2002:119-124. [95] VANDERSLICE JR W T, SCAFIDI C J. Battery heating system using internal battery resistance: U.S. Patent 5,362,942[P].1994-11-8.https://patents.google.com/patent/US5362942A/en.[96] LEE R J, BEENE J L, JEFFREY D P, et al. Battery warmer: U.S. Patent 5,281,792[P].1994-1-25.https://patents.google.com/patent/US5281792A/en. [97] HANDE A, STUART T. A selective equalizer for NiMH batteries[J]. Journal of Power Sources,2004,138(1):327-339. [98] STUART T, HANDE A. HEV battery heating using AC currents[J]. Journal of Power Sources,2004,129(2):368-378. [99] ZHANG J, GE H, LI Z, et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources,2015,273:1030-1037. [100] RUAN H, JIANG J, SUN B, et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries[J]. Applied Energy,2016,177:771-782. [101] ZHU J, SUN Z, WEI X, et al. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures[J]. Journal of Power Sources,2017,367:145-157. [102] ZHU J, SUN Z, WEI X, et al. An alternating current heating method for lithium-ion batteries from subzero temperatures[J]. International Journal of Energy Research,2016,40(13):1869-1883. [103] ZHU J, SUN Z, WEI X, et al. Experimental investigation of AC pulse heating method for NMC lithium-ion battery at subzero temperatures[C]. SAE Paper 2017-01-1217. |
[1] | 张念忠,宋强,王冠峰,王明生. 车用永磁同步电机无电流传感器控制研究[J]. 汽车工程, 2024, 46(2): 281-289. |
[2] | 焦志鹏, 马建, 赵轩, 张凯, 孟德安, 韩琪, 张昭. 基于电动汽车制动安全检测的短时工况及方法研究[J]. 汽车工程, 2024, 46(1): 109-119. |
[3] | 原江鑫, 何莉萍, 李耀东, 李罡. 电动汽车BMS从控板热分析及散热优化[J]. 汽车工程, 2024, 46(1): 128-138. |
[4] | 张鹏博, 陈仁祥, 邵毅明, 孙世政, 闫凯波. 纯电动汽车电驱动系统故障诊断研究进展[J]. 汽车工程, 2024, 46(1): 61-74. |
[5] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[6] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[7] | 贺伊琳,马建,杨舒凯,郑威,薛启帆. 融合预瞄特性的智能电动汽车稳定性模型预测控制研究[J]. 汽车工程, 2023, 45(5): 719-734. |
[8] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[9] | 吴忠强,张长兴. 考虑配电网负荷的电动汽车分布式充电控制[J]. 汽车工程, 2023, 45(4): 598-608. |
[10] | 吴志恒,刘爱民. 汽车永磁同步电机切换函数式混合控制策略[J]. 汽车工程, 2023, 45(4): 619-627. |
[11] | 王军年,高守林,杨钫,管畅洋,杨志华. 多行星排转矩定向分配电驱动桥振动特性优化[J]. 汽车工程, 2023, 45(3): 421-429. |
[12] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[13] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[14] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[15] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
|