汽车工程 ›› 2021, Vol. 43 ›› Issue (6): 934-942.doi: 10.19562/j.chinasae.qcgc.2021.06.018
收稿日期:
2020-12-08
修回日期:
2021-01-05
出版日期:
2021-06-25
发布日期:
2021-06-29
通讯作者:
陈志勇
E-mail:chen_zy@jlu.edu.cn
基金资助:
Helong Liu1,Wenku Shi1,Rui Gao2,Zhiyong Chen1(),Huang Chen2,Yunlong Sun3
Received:
2020-12-08
Revised:
2021-01-05
Online:
2021-06-25
Published:
2021-06-29
Contact:
Zhiyong Chen
E-mail:chen_zy@jlu.edu.cn
摘要:
运用Bouc?Wen摩擦学理论建立了复合材料板簧的迟滞特性模型,根据台架试验测得的动态力-位移曲线,利用改进的乌鸦搜索算法(MCSA)进行了模型的参数辨识。仿真结果与试验结果吻合较好,表明该模型能准确预测复合材料板簧的迟滞特性。建立考虑复合材料板簧迟滞特性的整车7自由度动力学模型,分析了在随机路面激励下,复合材料板簧迟滞特性对整车动态响应的影响。结果表明,复合材料板簧的迟滞特性使簧载质量的质心加速度增加,板簧的回复力增大,而悬架的动挠度减小。该研究为复合材料板簧的整车匹配和精细化动力学建模提供参考。
刘鹤龙,史文库,高蕊,陈志勇,陈晃,孙云龙. 复合材料板簧的迟滞特性建模与试验研究[J]. 汽车工程, 2021, 43(6): 934-942.
Helong Liu,Wenku Shi,Rui Gao,Zhiyong Chen,Huang Chen,Yunlong Sun. Modeling and Experimental Study on Hysteresis Characteristic of Composite Leaf Springs[J]. Automotive Engineering, 2021, 43(6): 934-942.
1 | ZINDANI D, MAITY S R, BHOWMIK S. Excogitating material rankings using novel aggregation multiplicative rule (AMR): a case for material selection problems[J]. Arabian Journal for Science and Engineering, 2020,45:5631–5646. |
2 | SHI W, QIAN C, CHEN Z, et al. Establishment of theoretical model of composite leaf springs by using the mechanics of composite materials[J]. Journal of Reinforced Plastics and Composites, 2017, 36(18): 1316-1326. |
3 | YANG S, SHI W, CHEN Z, et al. Composite mechanics and energy method based stiffness prediction model for composite leaf springs[J]. Mechanics Based Design of Structures and Machines, 2019, 47(3): 375-386. |
4 | 柯俊,史文库,钱琛,等.复合材料板簧刚度的预测及匹配设计方法[J].浙江大学学报(工学版),2015,49(11):2103-2110. |
KE J, SHI W K, QIAN C, et al. Prediction and matching design method for stiffness of composite leaf spring[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(11): 2103-2110. | |
5 | SUBRAMANIAN C, SENTHILVELAN S. Joint performance of the glass fiber reinforced polypropylene leaf spring[J]. Composite Structures, 2011, 93(2): 759-766. |
6 | QIAN C, SHI W, CHEN Z, et al. Fatigue reliability design of composite leaf springs based on ply scheme optimization[J]. Composite Structures, 2017, 168: 40-46. |
7 | 史文库,刘鹤龙,刘巧斌,等. 复合材料板簧非线性迟滞建模和参数识别[J]. 振动工程学报, 2019, 32(6):1050-1059. |
SHI W K, LIU H L, LIU Q B, et al. Hysteresis characteristic modelling and parameter identification for composite leaf springs[J]. Journal of Vibration Engineering, 2019, 32(6):1050-1059. | |
8 | 周孔亢, 陆建辉, 侯永涛,等. 基于RecurDyn的钢板弹簧动力学模型的建立与参数辨识[J]. 机械工程学报, 2014, 50(4):128-134. |
ZHOU K K, LU J H, HOU Y T, et al. Dynamics modeling and parameter identification of leaf spring based on RecurDyn[J]. Journal of Mechanical Engineering, 2014, 50(4):128-134. | |
9 | PUEL G, BOURGETEAU B, AUBRY D. Parameter identification of nonlinear time⁃dependent rubber bushings models towards their integration in multibody simulations of a vehicle chassis[J]. Mechanical Systems and Signal Processing, 2013, 36(2): 354-369. |
10 | 刘向, 陈伟, 赵景山, 等. 基于 Fancher 模型的钢板弹簧动刚度拟合精度研究[J]. 汽车技术, 2017 (3): 38-41. |
LIU X, CHEN W, ZHAO J, et al. Fitting precision analysis on the dynamic stiffness of leaf spring based on the fancher model[J]. Automobile Technology, 2017(3):38-41. | |
11 | 章杰, 吴茵, 张邦基,等. 板賛Bouc⁃Wen迟滞模型的仿真与试验研究[J]. 汽车工程, 2017, 39(12):1402-1408,1443. |
ZHANG J, WU Y, ZHANG B J, et al. Simulation and experimental study on Bouc⁃Wen hysteresis model of leaf spring[J]. Automotive Engineering, 2017, 39(12):1402-1408,1443. | |
12 | 谭博欢, 谢庆喜, 张农,等. 钢板弹簧迟滞特性建模及重载货车的动态响应分析[J]. 机械工程学报, 2019,55(15):193-201. |
FU B H, XIE Q X, ZHANG N, et al. Hysteresis characteristic modeling of leaf spring and dynamic response analysis of a heavy duty truck[J]. Journal of Mechanical Engineering, 2019,55(15):193-201. | |
13 | IKHOUANE F, RODELLAR J. Systems with hysteresis: analysis, identification and control using the Bouc⁃Wen model[M]. Chichester: John Wiley & Sons Ltd, 2007:113-118. |
14 | SIRETEANU T, GIUCLEA M, MITU A M. An analytical approach for approximation of experimental hysteretic loops by Bouc⁃Wen model[J]. Proceedings of Romanian Academy, Series A, 2009, 10(1): 43-54. |
15 | 李玲, 蔡安江, 蔡力钢,等. 基于Bouc-Wen模型辨识结合面动态特性研究[J]. 振动与冲击, 2013, 32(20):139-144. |
LI L, CAI A J, CAI L G, et al. Dynamic characteristics identification of joint interfaces based on a Bouc⁃Wen model[J]. Journal of Vibration and Shock, 2013, 32(20):139-144. | |
16 | ORTIZ G A, ALVAREZ D A, BEDOYA⁃RUÍZ D. Identification of Bouc⁃Wen type models using multi⁃objective optimization algorithms[J]. Computers & Structures, 2013, 114: 121-132. |
17 | 刘永强, 杨绍普, 廖英英, 等. 基于遗传算法的磁流变阻尼器Bouc⁃Wen模型参数辨识[J]. 振动与冲击, 2011, 30(7):261-265. |
LIU Y Q, YANG S P, LIAO Y Y, et al. Parameter identification of Bouc⁃Wen model for MR damper based on genetic algorithm[J]. Journal of Vibration and Shock, 2011, 30(7): 261-265. | |
18 | 周金龙, 董凌华, 杨卫东. 直升机后缘襟翼驱动器迟滞现象仿真与抑制[J]. 航空学报, 2020, 41(4):144-154. |
ZHOU J, DONG L, YANG W. Hysteresis modeling and suppression of piezoelectric actuator for helicopter trailing⁃edge flaps[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):144-154. | |
19 | CHARALAMPAKIS A E, DIMOU C K. Identification of Bouc-Wen hysteretic systems using particle swarm optimization[J]. Computers & Structures, 2010, 88(21):1197-1205. |
20 | XIE S L, ZHANG Y H, CHEN C H, et al. Identification of nonlinear hysteretic systems by artificial neural network[J]. Mechanical Systems & Signal Processing, 2013, 34(1–2):76-87. |
21 | 刘巧斌, 史文库, 高承明, 等. 采用灰色 Savitzky-Golay 滤波的商用车推力杆橡胶球铰非对称迟滞建模[J]. 西安交通大学学报, 2019, 53(5): 82-91 ,99. |
LIU Q, SHI W, GAO C, et al. Asymmetrical hysteresis modelling based on grey Savitzky Golay filter for rubber hinge on thrust rod of commercial vehicle[J]. Journal of Xi’an Jiaotong University,2019,53(5): 82-91,99. | |
22 | FANCHER P S, ERVIN R D, MACADAM C C, et al. Measurement and representation of the mechanical properties of truck leaf springs[C]. SAE Paper800905. |
23 | ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm[J]. Computers & Structures, 2016, 169(jun.):1-12. |
24 | UPADHYAY P, CHHABRA J K. Kapur's entropy based optimal multilevel image segmentation using crow search algorithm[J]. Applied Soft Computing, 2019:105522. |
25 | SUN Q, WANG Y, JIANG Y, et al. Non⁃invasive condition monitoring for boost converter based on crow search algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(6): 3661-3670. |
26 | OMAR A, HASANIEN H M, ELGENDY M A, et al. Identification of the photovoltaic model parameters using the crow search algorithm[J]. Journal of Engineering, 2017, 2017(13):1570-1575. |
27 | JOHN J , RODRIGUES P. MOTCO: Multi-objective Taylor crow optimization algorithm for cluster head selection in energy aware wireless sensor network[J]. Mobile Networks and Applications, 2019, 24(5):1509-1525. |
28 | 喻凡, 林逸. 汽车系统动力学[M]. 北京:机械工业出版社, 2005:173-174. |
YU F, LIN Y. The vehicle system dynamics[M]. Beijing: China Machine Press,2005:173-174. | |
29 | ZHENG M, PENG P, ZHANG B, et al. A new physical parameter identification method for two⁃axis on⁃road vehicles: simulation and experiment[J]. Shock and Vibration, 2015:191050. |
30 | 卢凡, 陈思忠. 汽车路面激励的时域建模与仿真[J]. 汽车工程, 2015,37(5): 549-553. |
LU F, CHEN S. Modeling and simulation of road surface excitation on vehicle in time domain[J]. Automotive Engineering, 2015, 37(5): 549-553. |
[1] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[2] | 陈盛钊,郑敏毅,凌启辉,陈哲吾. 双气室液压互联悬架系统特性研究[J]. 汽车工程, 2022, 44(2): 272-279. |
[3] | 孙文,李晨阳,王军年,钱灏喆,张文通. 越野车复合型悬架平顺性的研究[J]. 汽车工程, 2022, 44(1): 105-114. |
[4] | 綦衡敏, 张农, 王东, 张邦基, 郑敏毅. 安装ECAS和液压互联悬架的客车动态性能研究*[J]. 汽车工程, 2020, 42(3): 330-338. |
[5] | 李杰, 郭文翠, 谷盛丰, 赵旗. 基于NARX神经网络的路面不平度识别[J]. 汽车工程, 2019, 41(7): 807-814. |
[6] | 柯俊, 史文库, 袁可. 基于整车性能的复合材料板簧阻尼特性研究*[J]. 汽车工程, 2019, 41(12): 1424-1429. |
|