1 |
乔新勇,刘东利,康葳,等. 基于压力波的柴油机喷油器故障诊断研究[J].无损检测,2004,26(4):180-189.
|
|
QIAO X Y, LIU D L, KANG W, et al. Research on fault diagnosis for diesel injector based on fuel pressure waves[J]. Nondestructive Testing, 2004,26(4):180-189.
|
2 |
马超,王伏,龚笑舞,等.一种共轨喷油器故障诊断策略开发[J].现代车用动力,2016,3:49-53.
|
|
MA C, WANG F, GONG X W, et al. Development of a diagnostic strategy for common rail injector[J]. Modern Vehicle Power, 2016,3:49-53.
|
3 |
王金鑫,王忠巍,马修真,等. 柴油机燃油系统多故障的解耦与诊断技术[J].控制与决策,2019, 34(10):2249-2255.
|
|
WANG J X, WANG Z W, MA X Z, et al. Decoupling and diagnosis of multi⁃fault of diesel engine fuel system[J]. Control and Decision, 2019, 34(10):2249-2255.
|
4 |
孙宜权,王滨,张英堂,等. 基于自适应平行因子的柴油机喷油故障诊断研究[J]. 兵工学报,2013,34(5):519-526.
|
|
SUN Y Q, WANG B, ZHANG Y T, et al. Study of fault diagnosis of diesel engine fuel injection based on adaptive parallel factor[J]. Acta Armamentarii, 2013, 34(5):519-526.
|
5 |
崔海英,石秀华,王文斌,等. 基于LMBP算法的柴油机喷油器故障诊断[J].振动、测试与诊断,2009,29(4):466-469,481.
|
|
CUI H Y, SHI X H, WANG W B, et al. Fault diagnosis of diesel injector using levenberg⁃marquardt back propagation algorithm[J]. Journal of Vibration, Measurement and Diagnosis, 2009, 29(4):466-469,481.
|
6 |
曹继平,王赛,岳小丹,等.基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究[J].振动与冲击,2020,39(5):97-104.
|
|
CAO J P, WANG S, YUE X D, et al. Rolling bearing fault diagnosis of launch vehicle based on adaptive deep CNN[J]. Journal of Vibration and Shock,2020,39(5):97-104.
|
7 |
朱丹宸, 张永祥, 潘洋洋,等.基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J].振动与冲击,2020,39(4):172-178.
|
|
ZHU D C, ZHANG Y X, PAN Y Y, et al. Fault diagnosis for rolling element bearings based on multi⁃sensor signals and CNN[J].Journal of Vibration and Shock, 2020,39(4):172-178.
|
8 |
宫文峰, 陈辉, 张美,等.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205.
|
|
GONG W F, CHEN H, ZHANG M, et al. Intelligent diagnosis method for incipient fault of motor bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2020,41(1):195-205.
|
9 |
黄鑫, 陈仁祥, 黄钰. 卷积神经网络在机械设备故障诊断领域应用与挑战[J]. 设计与研究, 2019(1):96-100.
|
|
HUANG X,CHEN R X,HUANG Y. Convolution neural networks for mechanical equipment fault diagnosis: the application and challenge[J]. Desing and Research, 2019(1):96-100.
|
10 |
朱会杰,王新晴,芮挺,等. 基于平移不变CNN 的机械故障诊断研究[J]. 振动与冲击, 2019, 38(5):45-52.
|
|
ZHU H J,WANG X Q,RUI T,et al. Machinery fault diagnosis based on shift invariant CNN[J]. Journal of Vibration and Shock, 2019, 38(5):45-52.
|
11 |
郁磊,史峰,王辉,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2015:250-256.
|
|
YU L, SHI F, WANG H, et al. Analysis of 30 cases of MATLAB intelligent algorithm[M].Beijing: Beijing University of Aeronautics and Astronautics Press,2015: 250-256.
|
12 |
周兴康,余剑波. 基于深度一维残差卷积自编码网络的齿轮箱故障诊断[J]. 机械工程学报,2020,56(7): 96-108.
|
|
ZHOU X K, YU J B. Gearbox fault diagnosis based on one⁃dimension residual convolutional auto⁃encoder[J]. Journal of Mechanical Engineering, 2020,56(7): 96-108.
|
13 |
魏秀参.解析深度学习:卷积神经网络原理与视觉实践[M].北京:电子工业出版社,2018:32-33.
|
|
WEI X C. Analytical deep learning: Principles of convolutional neural networks and visual practice[M].Beijing:Electronic Industry Press,2018:32-33.
|
14 |
韩涛,袁建虎,唐建,等. 基于MWT 和CNN 的滚动轴承智能复合故障诊断方法[J].机械传动, 2016,40(12):139-143.
|
|
HAN T, YUAN J H, TANG J, et al. An approach of intelligent compound fault diagnosis of rolling bearing based on MWT and CNN[J]. Journal Mechanical Transmission, 2016,40(12):139-143.
|
15 |
吴魁,王仙勇,孙洁, 等. 基于深度卷积网络的多传感器信号故障诊断方法研究[J].计算机测量与控制,2018,26(1):18-21.
|
|
WU K, WANG X Y, SUN J, et al. Study of multi⁃sensor fault diagnose method based on convolutional neural networks[J]. Computer Measurement & Control, 2018,26(1):18-21.
|
16 |
高清春,胡甫才.基于变分模态和奇异值分解的柴油机气门间隙故障诊断方法研究[J].武汉理工大学学报,2019,43(4):746-751.
|
|
GAO Q C, HU P C. Research on the fault diagnosis method of diesel engine valve clearance based on vibrational mode and singular value decomposition[J]. Journal of Wuhan University of Technology, 2019,43(4):746-751.
|
17 |
吴建波,王春艳,洪华军,等. 基于极限学习机的船舶柴油机故障诊断[J].计算机工程与应用,2019, 55(15):147-152.
|
|
WU J B,WANG C Y,HONG H J, et al. Fault diagnosis of marine diesel engine based on extreme learning machine[J]. Computer Engineering and Applications, 2019, 55(15):147-152.
|
18 |
YOO H J. Deep convolution neural networks in computer vision: A review [J]. IEIE Transactions on Smart Processing and Computing,2015,4(1):35-43.
|