汽车工程 ›› 2023, Vol. 45 ›› Issue (6): 895-909.doi: 10.19562/j.chinasae.qcgc.2023.06.001
所属专题: 智能网联汽车技术专题-控制2023年
• • 下一篇
邹渊1,2(),孙文景1,2,张旭东1,2(),刘佳慧1,2,温雅1,2,马文斌1,2
收稿日期:
2023-02-28
修回日期:
2023-04-22
出版日期:
2023-06-25
发布日期:
2023-06-16
通讯作者:
邹渊,张旭东
E-mail:zouyuanbit@vip.163.com;xudong.zhang@bit.edu.cn
基金资助:
Yuan Zou1,2(),Wenjing Sun1,2,Xudong Zhang1,2(),Jiahui Liu1,2,Ya Wen1,2,Wenbin Ma1,2
Received:
2023-02-28
Revised:
2023-04-22
Online:
2023-06-25
Published:
2023-06-16
Contact:
Yuan Zou,Xudong Zhang
E-mail:zouyuanbit@vip.163.com;xudong.zhang@bit.edu.cn
摘要:
随着汽车智能化、网联化技术不断发展,传统电子电气架构已难以满足面向未来的车路云网一体化发展新需求。本文中聚焦面向未来的智能网联汽车多域电子电气架构,分别从总体设计、硬件系统、通信系统和软件系统4个方面对现有技术进行了详细的综述并对我国电子电气架构的发展进行展望。本文可对汽车电子电气架构技术研究提供重要的参考价值。
邹渊,孙文景,张旭东,刘佳慧,温雅,马文斌. 智能网联汽车多域电子电气架构技术发展研究[J]. 汽车工程, 2023, 45(6): 895-909.
Yuan Zou,Wenjing Sun,Xudong Zhang,Jiahui Liu,Ya Wen,Wenbin Ma. Study on the Technology Development of Multi-Domain Electrical and Electronic Architecture for Intelligent Networked Vehicles[J]. Automotive Engineering, 2023, 45(6): 895-909.
1 | CHU W, WUNIRI Q, DU X, et al. Cloud control system architectures, technologies and applications on intelligent and connected vehicles: a review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-23. |
2 | 李克强,常雪阳,李家文,等.智能网联汽车云控系统及其实现[J].汽车工程,2020,42(12):1595-1605. |
LI Keqiang, CHANG Xueyang, LI Jiawen, et al. Cloud control system for intelligent and connected vehicles and its application [J]. Automotive Engineering, 2020,42(12):1595-1605. | |
3 | XU Q, LI K, WANG J, et al. The status, challenges, and trends: an interpretation of technology roadmap of intelligent and connected vehicles in China (2020) [J]. Journal of Intelligent and Connected Vehicles, 2022. |
4 | MIELKE T, NEGREAN M, LU W, et al.Managing distributed systems development through model-based E/E-architecture design[C]. SAE Paper 2015-26-0012. |
5 | JIANG S.Vehicle E/E architecture and its adaptation to new technical trends[C]. SAE Paper 2019-01-0862. |
6 | NAVALE V M, WILLIAMS K, LAGOSPIRIS A, et al.(R) evolution of E/E architectures[J]. SAE Int. J. Passenger Cars-Electron. Elect. Syst., 2015,8: 282-288. |
7 | BANDUR V, SELIM G, PANTELIC V, et al. Making the case for centralized automotive E/E architectures[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1230-1245. |
8 | ZENG W, KHALID M A S, CHOWDHURY S.In-vehicle networks outlook: achievements and challenges[J]. IEEE Commun. Surveys Tuts., 2016,18(3):1552-1571. |
9 | ZHU H, ZHOU W, LI Z, et al. Requirements-driven automotive electrical/electronic architecture: a survey and prospective trends[J]. IEEE Access, 2021, 9: 100096-100112. |
10 | 崔明阳,黄荷叶,许庆,等.智能网联汽车架构、功能与应用关键技术[J].清华大学学报(自然科学版),2022,62(3):493-508. |
CUI Mingyang, HUANG Heye, XU Qing, et al. Survey of intelligent and connected vehicle technologies: architectures, functions and applications [J]. Ysinghua Univ (Sci&Technol),2022,62(3):493-508. | |
11 | 李白.技术整合的解决之道 德尔福派克电气罗伯特·赛德勒谈汽车电子电气架构[J].汽车与配件,2010(16):22-23. |
LI Bai. Solutions to technical integration: an interview with robert seidlee from Delphi packard electrical/electronic architecture [J]. Automobile & Parts, 2010(16):22-23. | |
12 | 邓戬. 智能网联汽车电子电气架构设计与试验研究[D].长春:吉林大学,2020. |
DENG Jian. Research on design and experiment of electronic and electrical architecture for intelligent connected vehicle [D]. Changchun: Jilin University, 2020. | |
13 | 倪斌.汽车电子电气架构设计与优化研究[J].电子技术与软件工程,2013(17):270. |
NI Bin. Research on vehicle electronic and electrical architecture design and optimization [J]. Automotive Electronics, 2013(17):270. | |
14 | 积木家智能科技. 新型电子电气架构架构的思考[EB/OL]. (2021-09-27) [2023-02-06]. https://zhuanlan.zhihu.com/p/498846265. |
Jimujia. Reflections on the new electronic and electrical architecture [EB/OL]. (2021-09-27) [2023-02-06]. https://zhuanlan.zhihu.com/p/498846265. | |
15 | 周连明.新能源电动汽车电子电气架构设计[J].电子技术与软件工程,2020(15):227-228. |
ZHOU Lianming. Design of electronic and electrical architecture for new energy electric vehicles [J]. Electronic Technology & Software Engineering, 2020(15):227-228. | |
16 | RTaW [EB/OL]. Available: https: //www. realtimeatwork. com. |
17 | CANoe. Vector. Accessed: Jan. 9, 2020 [EB/OL]. Available: https://www.vector.com/int/en/products/products-a-z/software/canoe/. |
18 | VEOS[EB/OL]. Available: https://www.dspace.com/zh/zho/home/products/sw/simulation_software/veos.cfm. |
19 | 胡耘浩,李克强,向云丰,等.智能网联汽车通用跨平台实时仿真系统架构及应用[J].汽车工程,2023,45(3):372-381. |
HU Yunhao, LI Keqiang, XIANG Yunfeng, et al. The universal architecture and application of cross-platform real-time simulation system for intelligent connected vehicles [J]. Automotive Engineering, 2023,45(3):372-381. | |
20 | 匡小军, 唐香蕉, 李桂伟,等. 汽车电子电气架构需求分析及优化研究 [J]. 汽车电器, 2019(8):45-46. |
KUANG Xiaojun, TANG Xiangjiao, LI Guiwei, et al. Requirement analysis and optimization of automotive electronic and electrical architecture [J]. Auto Electric Parts, 2019(8):45-46. | |
21 | ZHOU X, WANG K, ZHU L, et al. Development of vehicle domain controller based on ethernet[J].Journal of Physics: Conference Series. IOP Publishing, 2021, 1802(2): 022065. |
22 | WANG D, GANESAN S. Automotive domain controller[C].2020 International Conference on Computing and Information Technology (ICCIT-1441). IEEE, 2020: 1-5. |
23 | Automotive zone controller-application brief [EB/OL]. Available: https://www.nxp.com/docs/en/product-brief/S32G2ZONECONFS.pdf. |
24 | SOMMER S, CAMEK A, BECKER K, et al. Race: a centralized platform computer based architecture for automotive applications[C].2013 IEEE International Electric Vehicle Conference (IEVC). IEEE, 2013: 1-6. |
25 | 徐丽. 应用于宽电压范围Efuse电路设计[D].上海:复旦大学,2012. |
XU Li. Design of e-fuse circuit applied to wide voltage range [D]. Shanghai: Fudan University, 2012. | |
26 | 陈华梦. 汽车线束的优化设计和可靠性分析[D].上海:上海交通大学,2016. |
CHEN Huameng. Automotive wiring harness optimize design and reliability study [D]. Shanghai: Shanghai Jiaotong University, 2016. | |
27 | 周涛. 基于PREEvision的汽车电子电气架构研究[D].天津:河北工业大学,2016. |
ZHOU Tao. Design of vehicle electronic and electrical architecture based on preevision [D]. Tianjin: Hebei University of Technology, 2016. | |
28 | 郑继翔. 基于PREEvision的汽车电子电气线束设计研究[D].天津:河北工业大学,2017. |
ZHENG Jixiang. Research on the design of automotive electronic and electrical harness based on preevision [D]. Tianjin: Hebei University of Technology, 2017. | |
29 | 来振华. 车载CAN总线的技术特点及发展方向[J]. 汽车电器, 2009(4): l-2. |
LAI Zhenhua. Technical characteristics and development direction of vehicle can bus [J]. Auto Electric Parts, 2009(4): l-2. | |
30 | DENUTO J V, EWBANK S, KLEJA F, et al. LIN bus and its potential for use in distributed multiplex applications[C]. SAE Paper 2001-01-0072. |
31 | 张明. MOST总线实验与开发平台的设计[D].长春:吉林大学,2005. |
ZHANG Ming. The design of the most bus experiment and development platform [D]. Changchun: Jilin University, 2005. | |
32 | 徐志俊,钟再敏,孙泽昌.FlexRay总线在工业自动化领域的应用展望[J].工业控制计算机,2008(5):1-3. |
XU Zhijun, ZHONG Zaimin, SUN Zechang. Perspective of flexray bus used in industrial field [J]. Industrial Control Computer,2008(5):1-3. | |
33 | 李静茹. 车载以太网诊断协议的模糊测试技术研究[D].厦门:厦门理工学院,2022. |
LI Jingru. Research on fuzz testing techniques for automotive ethernet diagnostic protocol [D]. Xiamen: Xiamen University of Technology, 2022. | |
34 | ZELTWANGER H. Zonal network architecture and CAN networks[C]. Internationales Stuttgarter Symposium: Automobil-und Motorentechnik. Wiesbaden: Springer Fachmedien Wiesbaden, 2022: 501-508. |
35 | 郭炎荣,查云飞,陈文强,等.智能汽车电子电气架构综述[J].汽车文摘,2021(9):19-24. |
GUO Yanrong, ZHA Yunfei, CHEN Wenqiang, et al. Review on electronic and electrical architectures for intelligent vehicles [J]. Automotive Digest, 2021(9):19-24. | |
36 | 陈艳梅,薛亮.智能网联汽车总线技术及其安全威胁分析[J].汽车与配件,2021(17):50-54. |
CHEN Yanmei, XUE Liang. Analysis of intelligent connected vehicle bus technology and its security threats [J]. Automobile & Parts, 2021(17):50-54. | |
37 | SCHWABEL R. Technical challenges in future electrical architectures[C].SAE Paper 2011-01-1021. |
38 | 宋华振.时间敏感型网络技术综述[J].自动化仪表,2020,41(2):1-9. |
SONG Huazhen. Summary on time sensitive network technology [J]. Process Automation Instrumentation, 2020,41(2):1-9. | |
39 | 胥京宇.博通切入汽车市场开启车载以太网时代[J].世界电子元器件,2012(2) : 76-76. |
XU Jingyu. Broadcom enters the automotive market, opening the era of in-vehicle ethernet [J]. Global Electronics China, 2012(2): 76-76. | |
40 | IEEE.802.1AS-2020 - timing and synchronization for time-sensitive applications[S]. 2020. |
41 | MAHMOOD A,EXEL R,TRSEK H, et al. Clock synchronization over IEEE 802.11, a survey of methodologies and protocols[J]. IEEE Transactions on Industrial Informatics, 2016, PP(2):907-922. |
42 | SHRESTHA D,PANG Z,DZUNG D. Precise clock synchronization in high performance wireless communication for time sensitive networking[J]. IEEE Access, 2018:1-1. |
43 | GUTIÉRREZ M,STEINER W,DOBRIN R, et al. Synchronization quality of IEEE 802.1AS in large-scale industrial automation networks[C].2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2017. |
44 | 蔡岳平,姚宗辰,李天驰.时间敏感网络标准与研究综述[J].计算机学报,2021,44(7):1378-1397. |
CAI Yueping, YAO Zongchen, LI Tianchi. A survey on time-sensitive networking:standards and state-of-the-art [J]. Chinese Journal of Computers, 2021,44(7):1378-1397. | |
45 | MEYER P, STEINBACH T, KORF F, et al. Extending IEEE 802.1 AVB with time-triggered scheduling: a simulation study of the coexistence of synchronous and asynchronous traffic[C]. Vehicular Networking Conference. IEEE, 2014. |
46 | THANGAMUTHU S, CONCER N, CUIJPERS P J L, et al. Analysis of Ethernet-switch traffific shapers for in-vehicle networking applications[C]. Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2015,:55-60. |
47 | KIM H J, LEE K C, LEE S. A genetic algorithm based scheduling method for automotive ethernet[C].IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2021: 1-5. |
48 | 802.1CB-2017 - IEEE Standard for Local and metropolitan area networks-Frame Replication and Elimination for Reliability[S]. IEEE P8021cb/d26, August. 0. |
49 | WG802.1.IEEE Standard for local and metropolitan area networks-bridges and bridged networks-amendment 28: per-stream filtering and policing[S]. IEEE Sts. IEEE802.1Qci-2017, 2017:1-65. |
50 | PAHLEVAN M,OBERMAISSER R. Redundancy management for safety-critical applications with time sensitive networking[C].2018 28th International Telecommunication Networks and Applications Conference (ITNAC). IEEE, 2019. |
51 | NAKAYAMA Y, HISANO D, KUBO T, et al. TDD-based rapid fault detection and recovery for fronthaul bridged network[J]. IEEE Communications Letters, 2018:1-1. |
52 | PAHLEVAN M, BALAKRISHNA B, OBERMAISSER R. Simulation framework for clock synchronization in time sensitive networking[C].2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2019: 213-220. |
53 | IEEE B E. IEEE Standard for local and metropolitan area networks-virtual bridged local area networks amendment 14: stream reservation protocol (SRP)[J]. IEEE, 2010. |
54 | IEEE B E. IEEE Standard for local and metropolitan area networks-media access control (MAC) bridges and virtual bridged local area networks-amendment 18: enhanced transmission selection for bandwidth sharing between traffic classes[J].IEEE 2011. |
55 | BHM M, OHMS J, KUMAR M, et al. Dynamic real-time stream reservation for IEEE 802.1 time-sensitive networks with openflow[C]. 8th International Conference on Applied Innovation in IT. 2020. |
56 | 罗坤. 基于IEEE 802.1Qcc的时间敏感网络配置管理研究与实现[D].重庆:重庆邮电大学,2021. |
LUO Kun. Research and implementation of timesensitive networking configuration management based on IEEE 802.1Qcc [D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021. | |
57 | BELLO,LO L. The case for ethernet in automotive communications[J]. ACM SIGBED Review, 2011, 8(4):7-15. |
58 | STOLZ W, WILLIAMS K, LORENZ T, et al. Ethernet and IP - the solution to master complexity, safety and security in vehicle communication networks?[C].SAE 2011 World Congress & Exhibition, 2011. |
59 | KU I, LU Y, CERQUEIRA E, et al. Towards Software-defined VANET: architectures and services[C]. Med-Hoc-Net. 2014. |
60 | 朱明. 高效软件定义车载网络关键技术研究[D].长沙:国防科学技术大学,2016. |
ZHU Ming. Research on key technologies of high efficient software-defined vehicular networks [D]. Changsha: National University of Defense Technology, 2016. | |
61 | HE Z, CAO J, LIU X. SDVN: enabling rapid network innovation for heterogeneous vehicular communication[J]. IEEE Network: The Magazine of Computer Communications, 2016, 30(4):10-15. |
62 | GE X, LI Z, LI S. 5G Software DEFINED VEHICULAR NETworks[J]. IEEE Communications Magazine: Articles, News, and Events of Interest to Communications Engineers, 2017(7). |
63 | CORREIA S, BOUKERCHE A, MENEGUETTE R I. An architecture for hierarchical software-defined vehicular networks[J]. IEEE Communications Magazine, 2017, 55(7):80-86. |
64 | RAWASHDEH Z Y,MAHMUD S M. A novel algorithm to form stable clusters in vehicular ad hoc networks on highways[J]. Eurasip Journal on Wireless Communications & Networking, 2012. |
65 | HCKEL T, MEYER P, KORF F, et al. Software-defined networks supporting time-sensitive in-vehicular communication:IEEE, 10.1109/VTCSpring.2019.8746473[P]. 2019. |
66 | GERHARD T, KOBZAN T, BLOECHER I, et al. Software-defined flow reservation: configuring IEEE 802.1Q time-sensitive networks by the use of software-defined networking[C].24th IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, 2019. |
67 | 付朝辉,王华阳.功能架构在电子电气架构开发中的应用和实践[J]. 汽车工程,2021,43(12):1871-1879. |
FU Zhaohui, WANG Huayang. Application of functional architecture in electrical electronics architecture development [J]. Automotive Engineering, 2021,43(12):1871-1879. | |
68 | 孟天闯,李佳幸,黄晋,等.软件定义汽车技术体系的研究[J].汽车工程,2021,43(4):459-468. |
MENG Tianchuang, LI Jiaxing, HUANG Jin, et al. Study on technical system of software defined vehicles [J]. Automotive Engineering, 2021,43(4):459-468. | |
69 | 中国汽车工业协会软件工作组.软件定义汽车服务API参考规范[M].2022. |
Software Working Group, China Association of Automobile Manufacturers.Software-defined vehicle service API reference specification [M]. 2022. | |
70 | LIU Z, ZHANG W, ZHAO F. Impact, challenges and prospect of software-defined vehicles[J]. Automotive Innovation, 2022, 5(2): 180-194. |
71 | 熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005(4):503-512. |
XIONG Zhihui, LI Sikun, CHEN Jihua. Hardware/software partitioning based on dynamic combination of genetic algorithm and ant algorithm [J]. Journal of Software, 2005(4):503-512. | |
72 | 罗莉,夏军,何鸿君,等.一种有效的面向多目标软硬件划分的遗传算法[J].计算机科学,2010,37(12):275-279. |
LUO Li, XIA Jun, HE Hongjun, et al. Effective multi-objective genetic algorithm for hardware-software partitioning [J]. Computer Science, 2010,37(12):275-279. | |
73 | 韩红蕾,刘文菊,武继刚,等.多核片上系统的高效软硬件划分及调度算法[J].计算机工程与科学,2011,33(9):57-62. |
HAN Honglei, LIU Wenju, WU Jigang, et al. An efficient algorithm of hardware/software partitioning and scheduling on MPSoC [J]. Computer Engineering & Science, 2011,33(9):57-62. | |
74 | LI J. Research and implementation of hardware/software partitioning algorithms[D]. Shanghai: East China Normal School,2018. |
75 | MA T Y, YANG J, WANG X L. Low power hardware software partitioning algorithm for heterogeneous distributed embedded systems[C]. Embedded and Ubiquitous Computing, International Conference. IFIP, 2006: 702- 711. |
76 | LUO J, JHA N K. Power-efficient scheduling for heterogeneous distributed real-time embedded systems[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(6):1161-1170. |
77 | XIE G Q, CHEN Y K, LI R F, et al. Hardware cost design optimization for functional safety-critical parallel applications on heterogeneous distributed embedded systems[J]. IEEE Transactions on Industrial Informatics 2018, 14(6): 2418-2431. |
78 | ZOU W C, LI R F, WU W F, et al. Hardware cost and energy consumption optimization for safety-critical applications on heterogeneous distributed embedded systems[C]. 24th IEEE International Conference on Parallel and Distributed Systems. IEEE, 2018, 12: 528-536. |
79 | KUGELE S, OBERGFELL P, BROY M, et al. On service-orientation for automotive software[C]. 2017 IEEE International Conference on Software Architecture (ICSA). IEEE, 2017: 193-202. |
80 | TRAUB M, MAIER A, BARBEHÖN K L. Future automotive architecture and the impact of IT trends[J].IEEE Software,2017,34(3):27-32. |
81 | 刘佳熙,施思明,徐振敏,等.面向服务架构汽车软件开发方法和实践[J].中国集成电路,2021,30(Z1):82-88. |
LIU Jiaxi, SHI Siming, XU Zhenmin, et al. Development methodology and practice of automotive software based on service oriented architecture [J]. China Integrated Circuit, 2021,30(Z1):82-88. | |
82 | RUMEZ M, GRIMM D, KRIESTEN R, et al. An overview of automotive service-oriented architectures and implications for security countermeasures[J]. IEEE Access, 2020, 8: 221852-221870. |
83 | 汽标委智能网联汽车分标委. 车控操作系统架构研究报告[R/OL]. (2021). http://www.catarc.org.cn/upload/202109/22 /202109221130345380.pdf. |
Intelligent Connected Vehicle Sub-Committee of the National Technical Committee on Automobiles. Research report on vehicle control operating system architecture [R/OL]. (2021). http://www.catarc.org.cn/upload/202109/22/202109221130345380.pdf. | |
84 | 邱美涵,王晓琳,卞皓.基于AUTOSAR的电动汽车驱动电机控制系统设计与实现[J].汽车工程,2018,40(6):659-665. |
QIU Meihan, WANG Xiaolin, BIAN Hao. Design and implementation of the control system for the traction motor of electric vehicles based on AUTOSAR [J]. Automotive Engineering, 2018,40(6):659-665. | |
85 | 中国汽车基础软件生态委员会(AUTOSEMO). 中国汽车基础软件发展白皮书3.0[R]. 2022. |
China Automotive Software Ecosystem Committee (AUTOSEMO). China automotive basic software development white paper 3.0 [R]. 2022. | |
86 | 潘妍, 张也, 周瑞坤, 等. 我国智能网联汽车操作系统研究[J]. 电子元器件与信息技术, 2022, 6(5): 142-146. |
PAN Yan, ZHANG Ye, ZHOU Ruikun, et al. Research on operating systems for intelligent connected vehicles in China [J]. Electronic Components and Information Technology, 2022, 6(5): 142-146. | |
87 | FURST S, BECHTER M. AUTOSAR for connected and autonomous vehicles: the autosar adaptive platform[C].2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W). Toulouse, France: IEEE, 2016: 215-217. |
88 | 李鲁苗, 周玮. 全球车用操作系统发展现状[J]. 汽车纵横, 2022(1): 39-42. |
LI Lumiao, ZHOU Wei. Current development status of automotive operating systems worldwide [J]. Auto Review, 2022(1): 39-42. | |
89 | 单忠伟, 宋珂, 章桐. 符合AUTOSAR规范的汽车软件开发工具链及其应用流程[J]. 机电一体化, 2018, 24(3): 47-52,64. |
SHAN Zhongwei, SONG Ke, ZHANG Tong. Toolchain for development of automotive software based on AUTOSAR and its application process [J]. Mechatronics, 2018, 24(3): 47-5264. | |
90 | MENARD C, GOENS A, LOHSTROH M, et al. Achieving determinism in adaptive AUTOSAR[C].2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2020: 822-827. |
91 | 汽标委智能网联汽车分标委. 车载操作系统架构研究报告[R/OL]. (2021). http://www.catarc.org.cn/upload/202109/22/ 202109221131141024.pdf. |
Intelligent Connected Vehicle Sub-Committee of the National Technical Committee on Automobiles. Research report on in-vehicle operating system architecture [R/OL]. (2021). http://www.catarc.org.cn/upload/202109/22/202109221131141024.pdf. | |
92 | MAENE P, GÖTZFRIED J, DE CLERCQ R, et al. Hardware-based trusted computing architectures for isolation and attestation[J]. IEEE Transactions on Computers, 2017, 67(3): 361-374. |
93 | RAJAN A K S, FEUCHT A, GAMER L, et al. Hypervisor for consolidating real-time automotive control units: Its procedure, implications and hidden pitfalls[J]. Journal of Systems Architecture, 2018, 82: 37-48. |
94 | PARKER C E, WASEN J. Hypervisor implementation in vehicle networks[C].SAE Paper 2020-01-1334. |
[1] | 张旭东, 温雅, 邹渊, 孙文景, 张兆龙, 唐风敏, 刘卫国. 面向车载时间敏感网络的流量调度策略及改进算法研究[J]. 汽车工程, 2024, 46(1): 75-83. |
[2] | 杨震宇,罗峰,王子通,任毅,张晓先. 基于服务的多域电子电气架构安全访问控制[J]. 汽车工程, 2023, 45(9): 1626-1636. |
[3] | 王博文,罗峰,王子通. 基于OMNeT++的车载TSN通信仿真系统设计[J]. 汽车工程, 2023, 45(6): 954-964. |
[4] | 邹渊,孙文景,张旭东,温雅,曹万科,张兆龙. 面向时间敏感网络的车载以太网网络架构多目标优化[J]. 汽车工程, 2023, 45(5): 746-758. |
[5] | 孟天闯,李佳幸,黄晋,杨殿阁,钟志华. 软件定义汽车技术体系的研究[J]. 汽车工程, 2021, 43(4): 459-468. |
|