汽车工程 ›› 2024, Vol. 46 ›› Issue (9): 1608-1616.doi: 10.19562/j.chinasae.qcgc.2024.09.008
• • 上一篇
Hai Wang1(),Jianguo Li1,Yingfeng Cai2,Long Chen2
摘要:
在自动驾驶场景理解任务中进行准确的可行驶区域以及动静态物体分割对于后续的局部运动规划和运动控制至关重要。然而当前基于激光雷达点云的通用语义分割方法并不能在车端边缘计算设备上实现实时且鲁棒的预测,且不能预测当前时刻的物体运动状态。为解决该问题本文提出一种可行驶区域及动静态物体多任务分割网络MultiSegNet。该网络利用激光雷达输出的深度图及处理后得到的残差图像作为编码空间特征和运动特征的表征输入到网络用于特征学习,从而避免直接处理无序高密度点云。针对深度图在不同方向视角内目标分布数量差异较大的特点,本文提出了变分辨率分组输入策略。该方法能在降低网络计算量的同时提高网络的分割精度。为适配不同尺度目标所需要的卷积感受野尺寸本文提出了深度值引导的分层空洞卷积模块。同时本文为有效关联并融合不同时域下物体的空间位置和姿态信息提出了时空运动特征增强网络。为验证所提出MultiSegNet的有效性,本文在大规模点云驾驶场景数据集SemanticKITTI及nuScenes上进行验证。结果表明:可行驶区域、静态物体和动态物体的分割IoU分别达到98%、97%和70%,性能优于主流网络,且在边缘计算设备上实现实时推理。