1 |
LIU K X, SHI H, LIU B, et al. Research on new energy vehicle market penetration rate based on nested multi-nominal logit model[J]. Word Electric Vehicle Journal, 2021, 12(4): 249.
|
2 |
HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle [J]. eTransportation, 2019, 1: 100005.
|
3 |
LIU H, WEI Z, HE W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion and Management, 2017, 150: 304-330.
|
4 |
LI G, HUANG X D, FU X F. Design research on battery heating and preservation system based on liquid cooling mode[J]. Journal of Hunan University Natural Sciences, 2017, 44: 26-33.
|
5 |
LIU Y, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: 113426.
|
6 |
SADIGHI DIZAJI H, JAFARMADAR S, KHALILARYA S,et al. A comprehensive energy analysis of a prototype Peltier air-cooler experimental investigation[J]. Renewable Energy, 2019, 131: 308-317.
|
7 |
LING Z, LIN W, ZHANG Z, et al. Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment[J]. Applied Energy, 2020, 259: 114120.
|
8 |
IANNICIELLO L, BIWOL´E P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials[J]. Journal of Power Sources, 2018, 378: 383-403.
|
9 |
ZHANG J N, SUN F C, WANG Z P. Heating character of a LiMn2O4 battery pack at low temperature based on PTC and metallic resistance material[J]. Energy Procedia, 2017, 105: 2131-2138.
|
10 |
WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529 (7587): 515-518.
|
11 |
KALOGIANNIS T, JAGUEMONT J, OMAR N, et al. A comparison of internal and external preheat methods for NMC batteries[J]. World Electric Vehicle Journal, 2019, 10: 1-16.
|
12 |
GUO S, XIONG R, WANG K, et al. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application[J]. Applied Energy, 2018, 219: 256-263.
|
13 |
林雨婷,陈键,陈富,等. 一种动力电池脉冲加热系统及其控制方法:113060048 [P]. 2021-07-02.
|
|
LIN Yuting, CHEN Jian, CHEN Fu, et al. A pulse heating system and control method of power battery : 113060048 [P]. 2021-07-02.
|
14 |
孙泽昌,朱建功,刘耀锋,等. 一种动力锂离子电池模块用低温自加热电路:203721843 [P]. 2014-07-16.
|
|
SUN Zechang, ZHU Jiangong, LIU Yaofeng, et al. A low-temperature self-heating circuit for lithium-ion battery module: 203721843[P]. 2014-07-16.
|
15 |
QU Z G, JIANG Z Y, WANG Q. Experimental study on pulse self-heating of lithium-ion battery at low temperature[J]. International Journal Heat and Mass Transfer, 2019, 135: 696-705.
|
16 |
YU Z K, HUANG X S, LIN S Y, et al. Analysis and experiment of bipolar-pulse heating mehtod for lithium-ion batteries[C]. PEAS - IEEE Int. Power Electron. Appl. Symp, Conf. Proc, Shanghai, November, 2021.
|
17 |
DU C H, PENG Q L, CHEN F, et al. Investigation on the method of battery self-heating using motor pulse current[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236 (10-11): 2399-2409.
|
18 |
LI Y L, DU J Y, ZHOU G, et al. A rapid self-heating battery pack achieved by novel driving circuits of electric vehicle[J]. Energy Report, 2020, 6: 1016-1023.
|
19 |
吴晓刚,崔智昊.一种适用于动力电池组的内部加热方法: 109950659[P]. 2019-06-28.
|
|
WU Xiaogang, CUI Zhihao. An internal heating method of the power battery pack: 109950659[P]. 2019-06-28.
|
20 |
ZHU J G, SUN Z C, WEI X Z, et al. An alternating current heating method for lithium-ion batteries from subzero temperatures[J]. International Journal of Energy Research, 2016, 40 (13): 1869-1883.
|
21 |
WU X G, CUI Z H, CHEN E S, et al. Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature[J]. Journal of Energy Storage, 2020, 31: 101746.
|
22 |
QIN Y D, XU Z C, WU Y Q, et al. Temperature distribution of lithium ion battery module with inconsistent cells under pulsed heating method[J]. Applied Thermal Engineering, 2022, 212: 118529.
|
23 |
QIN Y D, DU J Y, LU L G, et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current: heating effect and impact on battery life[J]. Applied Energy, 2020, 280: 115957.
|
24 |
ZHU J, SUN X, WEI X, et al. Experimental investigation of an AC method for vehicular high power lithium-ion batteries at subzero temperature[J]. Journal Power Sources, 2017, 367: 145-157.
|
25 |
DU J Y, SUN Y Z. The influence of high power charging on the lithium battery based on constant and pulse current charging strategies[C]. IEEE Veh. Power Propuls. Conf., VPPC - Proc. Spain, November, 2020.
|
26 |
吴晓刚,李凌任,高鑫家,等. 锂离子电池脉冲频率优化的低温预热[J]. 电机与控制学报, 2021, 25(11): 57-65.
|
|
WU Xiaogang, LI Lingren, GAO Xinjia, et al. Preheating the lithium-ion battery with realtime optimized pulse frequency under low temperature[J]. Electric Machines and Control, 2021, 25(11): 57-65.
|
27 |
LYU C, LUO W L, SHENG Y, et al. A pulse heating method without capacity reduction for lithium-ion batteries[C]. Proc. IEEE Conf. Ind. Electron. Appl., ICIEA, Xi’an, June, 2019.
|
28 |
JIANG H L, HUANG Z W, LIU Y J, et al. An optimal pulse heating strategy for lithium-ion battery considering both capacity fade and heating time[C]. Conf. Proc. IEEE Int. Conf. Syst. Man Cybern. Melbourne, October, 2021.
|
29 |
HUANG Z W, GUO Z W, LIU Y J, et al. A fast energy-efficient pulse preheating strategy for Li-ion battery at subzero temperatures[C]. ECCE - IEEE Energy Convers. Congr. Expo.Detroit, October, 2020.
|
30 |
VU H, SHIN D H, et al. Scheduled preheating of Li-ion battery packs for balanced temperature and state-of-charge distribution[J]. Energies, 2020, 13(9): 2212.
|