汽车工程 ›› 2024, Vol. 46 ›› Issue (12): 2220-2231.doi: 10.19562/j.chinasae.qcgc.2024.12.009

• • 上一篇    下一篇

基于机器学习的变形模式控制耐撞性优化

李治祥,祝丹晖(),张佳欢   

  1. 比亚迪汽车有限公司,西安 710311
  • 收稿日期:2024-06-28 修回日期:2024-08-16 出版日期:2024-12-25 发布日期:2024-12-20
  • 通讯作者: 祝丹晖 E-mail:zhudanhui_byd@163.com

Machine Learning Based Crashworthiness Optimization with Structural Deformation Mode Control

Zhixiang Li,Danhui Zhu(),Jiahuan Zhang   

  1. BYD Auto Co. ,Ltd. ,Xi’an  710311
  • Received:2024-06-28 Revised:2024-08-16 Online:2024-12-25 Published:2024-12-20
  • Contact: Danhui Zhu E-mail:zhudanhui_byd@163.com

摘要:

耐撞性优化是实现车辆更好被动安全保护性能的有效途径,但目前的优化都专注于数值型响应的提升,而忽略了变形模式这一类别型响应的控制。关键部件的变形模式关乎车辆传力路径设计是否有效,如果不理想的变形模式出现在优化解中,则无法保证优化结果的有效性。为此,本研究提出了基于机器学习的变形模式控制优化方法,以实现在提升耐撞性指标的同时保证优化解中的样本均以理想模式变形。结构变形以图片形式进行数据表示,利用深度学习自编码提取变形特征并进行聚类识别不同的变形模式,然后对识别出的变形模式和数值型响应均建立基于Light Gradient Boosting Machine (LightGBM)的机器学习预测模型,最后在机器学习预测模型上开展优化求解。使用整车正碰案例对提出的机器学习优化方法进行验证,结果显示该优化方法在提升耐撞性数值响应的同时保证了纵梁以理想模式变形。本研究展示了机器学习在提升结构优化有效性方面的前景。

关键词: 结构优化, 机器学习, 图像聚类, 耐撞性

Abstract:

Crashworthiness optimization is an effective way to achieve better passive safety protection performance of vehicles, but current optimization focuses on improving numerical response, while neglecting the control of a category response, namely, deformation modes. The deformation mode of key components is related to the effectiveness of vehicle force transmission path design. If an unsatisfactory deformation mode occurs in the optimization solution, the effectiveness of the optimization result cannot be guaranteed. Therefore, in this study a machine learning based deformation mode control optimization method is proposed to improve the crashworthiness index while ensuring that all samples in the optimization solution deform in ideal modes. Structural deformation is represented in the form of images, and deep learning auto encoder is used to extract deformation features and cluster them to identify different deformation modes. Then, machine learning prediction models based on Light Gradient Boosting Machine (LightGBM) are established for the identified deformation modes and numerical responses. Finally, the optimization is solved based on the machine learning prediction models. The proposed machine learning optimization method is validated using a full vehicle frontal collision case, and the results show that while improving the numerical crashworthiness responses, the deformation mode of the longitudinal beam is ensured to deform in an ideal mode. This study demonstrates the prospects of machine learning in improving the effectiveness of structural optimization.

Key words: structural optimization, machine learning, image clustering, crashworthiness