Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 2076-2090.doi: 10.19562/j.chinasae.qcgc.2024.11.014
Previous Articles Next Articles
Wen Sun1,2,Chenyang Li1,4,Junnian Wang2(),Xujun Wan3,Guijun Liu1,Wei Li4
Received:
2024-03-16
Revised:
2024-04-23
Online:
2024-11-25
Published:
2024-11-22
Contact:
Junnian Wang
E-mail:wjn@jlu.edu.cn
Wen Sun,Chenyang Li,Junnian Wang,Xujun Wan,Guijun Liu,Wei Li. Research on Ride Comfort of Composite Suspension Based on Multiple Working Condition Modes[J].Automotive Engineering, 2024, 46(11): 2076-2090.
"
车速 | 悬架类型 | 车身垂向加速度 均方根值/(m·s-2) | 性能改善/% | 车身侧倾角加速度 均方根值/(m·s-2) | 性能改善/% | 车身俯仰角加速度均方根值/(m·s-2) | 性能改善/% |
---|---|---|---|---|---|---|---|
30 km/h | 传统悬架 | 0.039 7 | 30.47 | 0.004 8 | 18.75 | 0.329 6 | 12.59 |
复合型悬架 | 0.027 6 | 0.003 9 | 0.288 1 | ||||
50 km/h | 传统悬架 | 0.046 1 | 30.80 | 0.011 0 | 23.63 | 0.429 1 | 5.57 |
复合型悬架 | 0.031 9 | 0.008 4 | 0.405 2 | ||||
70 km/h | 传统悬架 | 0.053 7 | 34.63 | 0.014 8 | 56.75 | 0.500 7 | 2.98 |
复合型悬架 | 0.035 1 | 0.006 4 | 0.485 8 | ||||
90 km/h | 传统悬架 | 0.060 9 | 33.17 | 0.015 9 | 49.69 | 0.549 0 | 2.68 |
复合型悬架 | 0.040 7 | 0.008 0 | 0.534 3 |
"
转向盘转角 | 悬架类型 | 车身垂向加速度均方根值/(m·s-2) | 性能改善/% | 车身侧倾角加速度均方根值/(m·s-2) | 性能改善/% | 车身俯仰角加速度均方根值/(m·s-2) | 性能改善/% |
---|---|---|---|---|---|---|---|
60° | 传统悬架 | 0.020 6 | 29.61 | 0.315 4 | 22.99 | 0.169 1 | 34.00 |
复合型悬架 | 0.014 5 | 0.242 9 | 0.111 6 | ||||
90° | 传统悬架 | 0.024 1 | 30.29 | 0.315 6 | 25.57 | 0.181 9 | 32.55 |
复合型悬架 | 0.016 8 | 0.234 9 | 0.127 7 | ||||
120° | 传统悬架 | 0.023 0 | 22.61 | 0.326 7 | 25.25 | 0.146 3 | 11.28 |
复合型悬架 | 0.017 8 | 0.244 2 | 0.129 8 | ||||
150° | 传统悬架 | 0.025 5 | 12.55 | 0.339 7 | 15.07 | 0.172 5 | 22.55 |
复合型悬架 | 0.022 3 | 0.288 5 | 0.133 6 |
"
车速 | 悬架类型 | B级路面车身垂向 加速度均方根值/(m·s-2) | 性能 改善/% | C级路面车身垂向 加速度均方根值/(m·s-2) | 性能 改善/% | D级路面车身垂向加速度均方根值/(m·s-2) | 性能 改善/% |
---|---|---|---|---|---|---|---|
30 km/h | 传统悬架 | 0.034 0 | 2.35 | 0.034 8 | 2.59 | 0.045 1 | 23.72 |
复合型悬架 | 0.033 2 | 0.033 9 | 0.034 4 | ||||
50 km/h | 传统悬架 | 0.030 4 | 8.22 | 0.032 7 | 11.93 | 0.037 2 | 2.96 |
复合型悬架 | 0.027 9 | 0.028 8 | 0.036 1 | ||||
70 km/h | 传统悬架 | 0.027 9 | 2.88 | 0.041 0 | 3.66 | 0.040 8 | 1.23 |
复合型悬架 | 0.027 1 | 0.039 5 | 0.040 3 | ||||
90 km/h | 传统悬架 | 0.028 6 | 1.75 | 0.032 8 | 3.65 | 0.043 7 | 1.60 |
复合型悬架 | 0.028 1 | 0.031 6 | 0.043 0 |
1 | 刘岸泽. 我国汽车软件发展渐入佳境[J]. 智能网联汽车,2022,5(1):37-39. |
LIU Anze. Development of automobile software in our country is gradually getting better [J]. Intelligent Connected Vehicles, 2022,5(1):37-39. | |
2 | 余志生. 汽车理论[M]. 4版. 北京: 机械工业出版社, 2006. |
YU Zhisheng. Elementary vehicle dynamics[M]. 4th ed. Beijing: China Machine Press, 2006. | |
3 | LIU L, LI X, LIU Y J, et al. Neural network based adaptive event trigger control for a class of electromagnetic suspension systems[J]. Control Engineering Practice, 2021, 106: 104675. |
4 | LI Y, YANG X, SHEN Y, et al. Optimal design and dynamic control of the HMDV inertial suspension based on the ground-hook positive real network[J]. Advances in Engineering Software, 2022, 171: 103171. |
5 | LIU J, ZHUANG D J, YU F, et al. Optimized design for a MacPherson strut suspension with side load springs[J]. International Journal of Automotive Technology, 2008, 9: 29-35. |
6 | AB TALIB M H, MAT DARUS I Z, MOHD SAMIN P, et al. Vibration control of semi-active suspension system using PID controller with advanced firefly algorithm and particle swarm optimization[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 1119-1137. |
7 | ZHANG J, YANG Y, HU C. An adaptive controller design for nonlinear active air suspension systems with uncertainties[J]. Mathematics, 2023, 11(12): 2626. |
8 | 张建文, 庄德军, 林逸, 等. 汽车用空气弹簧悬架系统综述[J]. 公路交通科技, 2002(6): 151-155. |
ZHANG Jianwen, ZHUANG Dejun, LIN Yi, et al. Survey of automotive air spring suspension system[J]. Journal of Highway and Transportation Research, 2002(6): 151-155. | |
9 | 徐明, 黄庆生. 车辆半主动悬架智能控制方法研究现状[J]. 机床与液压, 2021, 49(1):169-174. |
XU Ming, HUANG Qingsheng. Research status of intelligent control method for vehicle semi-active suspension [J]. Machine Tool & Hydraulics, 2021, 49(1):169-174. | |
10 | LEI Jing, LI Tongxing. Nonlinear optimal internal-model control for multiple time-delay systems with application to vehicle suspensions[J]. Integrated Ferroelectrics, 2020,207(1). |
11 | 曹艳玲, 张琦. 自适应神经模糊推理的四轮转向车辆转向控制研究[J]. 机械设计与制造, 2021(3):224-228,233. |
CAO Yanling, ZHANG Qi. Research on steering control of four-wheel steering vehicle based on adaptive neuro-fuzzy system [J]. Machinery Design & Manufacture, 2021(3):224-228,233. | |
12 | NAZEMIAN H, MASIH-TEHRANI M. Hybrid fuzzy-PID control development for a truck air suspension system[J]. SAE International Journal of Commercial Vehicles, 2020, 13(1): 55-70. |
13 | FOUAD Giri, KHALID El Majdoub, FATIMA-ZAHRA Chaoui. Adaptive backstepping control design for semi-active suspension of half-vehicle with magnetorheological damper[J]. Journal of Automatica Sinica, 2021, 8(3):582-596. |
14 | AL AELA A M, KENNE J P, MINTSA H A. Adaptive neural network and nonlinear electrohydraulic active suspension control system[J]. Journal of Vibration and Control, 2022, 28(3-4): 243-259. |
15 | YIN Y, LUO B, REN H, et al. Robust control design for active suspension system with uncertain dynamics and actuator time delay[J]. Journal of Mechanical Science and Technology, 2022, 36(12): 6319-6327. |
16 | 张丽霞, 李宁斐, 梁冠群, 等. 阻尼连续可调半主动悬架平滑天棚控制策略研究[J]. 噪声与振动控制, 2023,43(2):169-173,184. |
ZHANG Lixia, LI Ningfei, LIANG Guanqun, et al. Research on smooth skyhook control strategy of semi-active suspension with continuously adjustable damping [J]. Noise and Vibration Control, 2023,43(2):169-173,184. | |
17 | 许力, 曹青松, 张定军. 基于量子粒子群算法的主动悬架分数阶控制策略[J]. 振动与冲击, 2021,40(16):227-233. |
XU Li, CAO Qingsong, ZHANG D J. Fractional order control strategy of active suspension based on QPSO [J]. Journal of Vibration and Shock, 2021,40(16):227-233. | |
18 | 汪少华, 翟旭辉, 孙晓强, 等. 车辆刚度阻尼多级可调式油气悬架系统分析及控制研究[J]. 振动与冲击, 2022,41(12):168-177. |
WANG Shaohua, ZHAI Xuhui, SUN Xiaoqiang, et al. Analysis and control of a vehicle hydro pneumatic suspension system with multistage adjustable stiffness and damping characteristics [J]. Journal of Vibration and Shock, 2022,41(12):168-177. | |
19 | 于文浩. 车辆互联空气悬架系统协同控制方法研究[D]. 镇江: 江苏大学,2020. |
YU Wenhao. Research on the cooperative control method of vehicle interconnected air suspension system[D]. Zhenjiang: Jiangsu University, 2020. | |
20 | 张学臣. 牵引车电控空气悬架控制策略研究[D]. 长春: 吉林大学, 2018. |
ZHANG Xuecheng. Research on control strategy of electronically controlled air suspension for tractor[D]. Changchun: Jilin University, 2018. | |
21 | 王伟, 张晶涛, 柴天佑. PID参数先进整定方法综述[J]. 自动化学报, 2000(3): 347-355. |
WANG Wei, ZHANG Jingtao, CHAI Tianyou. A survey of advanced PID parameter tuning methods[J]. Acta Automatica Sinica, 2000(3): 347-355. | |
22 | 鲍卫宁. 汽车空气悬架及其控制系统动力学仿真分析研究[D]. 武汉: 华中科技大学,2011. |
BAO Weining. Research on the modeling and dynamic simulation of the air suspension and its control system [D]. Wuhan: Huazhong University of Science and Technology, 2011. LAN H. Research on electromagnetic force waves and electromagnetic vibration of PMSMS[D]. Harbin: Harbin Institute of Technology, 2020. | |
23 | 王刚, 李昆鹏, 景晖,等. 基于Q学习的整车主动悬架免参数H∞控制[J]. 汽车工程, 2023, 45(12):2260-2271. |
WANG Gang, LI Kunpeng, JING Hui, et al. Parameter-free H∞ control of vehicle active suspension based on Q-learning [J]. Automotive Engineering, 2023, 45(12):2260-2271. | |
24 | 王大勇, 王慧. 基于变论域模糊控制的车辆半主动悬架控制方法[J]. 中国机械工程, 2017, 28(3): 366-372. |
WANG Dayong, WANG Hui. Control method of vehicle semi active suspension based on variable universe fuzzy control[J]. China Mechanical Engineering, 2017, 28(3): 366-372. | |
25 | 吴骁, 史文库, 陈志勇. 基于交互式多模型卡尔曼滤波的主动悬架控制[J]. 汽车工程, 2023, 45(7):1200-1211,1253. |
WU Xiao, SHI Wenku, CHEN Zhiyong. Active suspension control based on interacting multiple model Kalman filter[J]. Automotive Engineering, 2023, 45(7):1200-1211,1253. | |
26 | LIAO Xiangping, YANG Shuai, HU Dong, et al. Control performance improvement of hydro-viscous clutch based on fuzzy-PID controller[J]. Energies,2021,14(24). |
27 | 孙文, 李晨阳, 王军年,等. 越野车复合型悬架平顺性的研究[J].汽车工程,2022,44(1):105-114,122. |
SUN Wen, LI Chenyang, WANG Junnian, et al. Research on ride comfort of an off-road vehicle with compound suspension [J]. Automotive Engineering, 2022,44(1):105-114,122. |
No related articles found! |