有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者之间不同的交互关系及未来风险状态。本文提出了一种基于时空图卷积神经网络的异构多目标风险预测方法Risk-STGCN,通过图卷积及时间卷积分别对单帧场景图信息与时序信息进行学习,结合多层时序预测网络对多目标风险指标TTC进行预测。在开源BLVD与实车自采数据集上进行了训练验证,并与常用序列预测模型进行对比。实验结果表明,所提模型在不同数据集上的平均TTC误差均在0.95 s以下,多实验指标均优于文中所提到的其他模型,具有良好的鲁棒性,同时提升了复杂交通场景下风险预测的可解释性。