汽车工程 ›› 2024, Vol. 46 ›› Issue (4): 735-744.doi: 10.19562/j.chinasae.qcgc.2024.04.019

• • 上一篇    

钢-铝混合驾驶室材料-结构轻量化设计

王超1,李明2(),成艾国1,何智成1,于万元3   

  1. 1.湖南大学,汽车车身先进设计制造国家重点实验室,长沙 410082
    2.广西科技大学机械与汽车工程学院,柳州 545006
    3.柳州职业技术学院,柳州 545001
  • 收稿日期:2023-07-20 修回日期:2023-10-29 出版日期:2024-04-25 发布日期:2024-04-24
  • 通讯作者: 李明 E-mail:Liming_221068210@163.com
  • 基金资助:
    国家重点研发计划(2020YFA0710904-03);国家自然科学基金联合基金(U20A20285)

Lightweight Design of Material-Structure for Steel-Aluminum Hybrid Cab

Chao Wang1,Ming Li2(),Aiguo Cheng1,Zhicheng He1,Wanyuan Yu3   

  1. 1.Hunan University,State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Changsha  410082
    2.School of Mechanical and Automotive Engineering,Guangxi University of Science and Technology,Liuzhou  545006
    3.Liuzhou Vocational & Technical College,Liuzhou  545001
  • Received:2023-07-20 Revised:2023-10-29 Online:2024-04-25 Published:2024-04-24
  • Contact: Ming Li E-mail:Liming_221068210@163.com

摘要:

为了得到更为完善的商用车驾驶室轻量化设计,提出了钢-铝混合驾驶室材料-结构一体化轻量化方法。首先基于灵敏度分析、等刚度近似理论与等强度理论建立了性能驱动的材料选择方法,并针对钢制驾驶室初步设计了钢-铝混合材料方案。然后通过折衷规划法的拓扑优化识别了驾驶室关键传力路径,并加强了相关结构。其次考虑驾驶室零件厚度、截面尺寸设计参数,建立了驾驶室质量、刚度及模态性能的径向基函数的代理模型,并采用多目标粒子群优化方法对驾驶室进行多目标优化设计。优化结果表明,在满足驾驶室刚度、模态和碰撞性能的要求下,驾驶室质量减轻了12.8%。该方法对钢-铝混合驾驶室轻量化有实际的工程指导价值。

关键词: 商用车驾驶室, 钢-铝混合, 轻量化, 拓扑优化, 多目标粒子群优化

Abstract:

In order to obtain a more comprehensive lightweight design for the commercial vehicle cab, a holistic material-structure lightweight method for the steel-aluminum hybrid cab is proposed. Firstly, a performance-driven material selection method is established, which is based on sensitivity analysis, equal stiffness approximation theory, and equal strength theory. The scheme of steel-aluminum hybrid materials for steel cab is preliminary designed. Secondly, the key force transfer paths of the cab are identified by compromise programming method topology optimization and the relevant structures are strengthened. Then, the radial basis function (RBF) surrogate models of cab mass, stiffness, and modal performance are established, by considering the design parameters of the thicknesses of cab parts and cross-section sizes. And the multi-objective particle swarm optimization approach (MOPSO) is used for the multi-objective optimal design of the cab. The optimization results show that the mass of the cab is reduced by 12.8% under the requirements of cab performances of stiffness, modal, and collision. This method has practical engineering guidance value for the lightweight of steel-aluminum hybrid cab.

Key words: commercial vehicle cab, steel-aluminum hybrid, lightweight, topology optimization, MOPSO