汽车工程 ›› 2024, Vol. 46 ›› Issue (4): 662-668.doi: 10.19562/j.chinasae.qcgc.2024.04.012

• • 上一篇    

燃料电池废热驱动弹热制冷装置性能分析

彭钰祥,余庆华(),敖瑞,颜伏伍   

  1. 武汉理工大学,现代汽车零部件技术湖北省重点实验室,湖北省新能源与智能网联车工程技术研究中心,武汉 430070
  • 收稿日期:2023-09-20 修回日期:2023-10-12 出版日期:2024-04-25 发布日期:2024-04-24
  • 通讯作者: 余庆华 E-mail:qhyu@whut.edu.cn
  • 基金资助:
    *湖北省自然科学基金联合基金(2023AFD187)、湖北省重点研发计划项目(2021BAA016)和中央高校基本科研业务费专项资金资助项目(2022IVA024)资助。

Performance Analysis of Elastocaloric Cooler Driven by Waste Heat from Fuel Cell

Yuxiang Peng,Qinghua Yu(),Rui Ao,Fuwu Yan   

  1. Wuhan University of Technology,Hubei Research Center for New Energy & Intelligent Connected Vehicle,Hubei Key Laboratory of Modern Automobile Parts Technology,Wuhan 430070
  • Received:2023-09-20 Revised:2023-10-12 Online:2024-04-25 Published:2024-04-24
  • Contact: Qinghua Yu E-mail:qhyu@whut.edu.cn

摘要:

热驱动弹热制冷是利用形状记忆合金被加热变形来驱动弹热材料相变从而产生制冷效应的新型固态制冷技术。本文设计了一种将弹热制冷装置与燃料电池相结合的组合系统,利用燃料电池产生的废热来驱动弹热制冷装置,以提高能量利用效率,并产生制冷效果。基于燃料电池和弹热制冷的工作原理,采用Simulink建立了全系统动态耦合仿真模型,研究了组合系统的动态工作特性,并分析了运行参数对系统性能的影响规律。结果表明:增加弹热制冷装置能提高整个系统的能量利用效率,电堆工作温度为80 ℃时该系统可产生1.76 kW的制冷功率,调整电堆工作压强至2.5 atm可最大化系统的综合输出功率和运行效率,电堆电流密度对组合系统的输出功率和运行效率呈现相反的影响趋势。

关键词: 质子交换膜燃料电池, 弹热制冷, 废热回收

Abstract:

Heat-driven elastocaloric cooling is a new solid-state refrigeration technology which uses shape memory alloy deformation after heating to drive the phase transformation of elastocaloric materials to produce a refrigeration effect. In this paper, a combined system of elastocaloric refrigeration device and fuel cell is designed, which uses the waste heat from fuel cell to drive the elastocaloric-cooling device to improve the efficiency of energy utilization, and produce a cooling effect. Based on the working principles of fuel cell and elastocaloric cooling, a dynamic coupled simulation model for the whole system is established by Simulink software to study the dynamic operation characteristics of the combined system and the influence of operation parameters on the system performance. The results show that adding an elastocaloric cooler can improve the energy utilization efficiency of the whole system. When the operation temperature of fuel cell is 80 ℃, the system can produce 1.76 kW cooling power. Adjusting the operation pressure of fuel cell to 2.5 atm can maximize the comprehensive output power and operation efficiency of the system. The current density of fuel cell has opposite influence on the output power and operation efficiency of the combined system.

Key words: proton exchange membrane fuel cell, elastocaloric cooler, waste heat recovery