汽车工程 ›› 2021, Vol. 43 ›› Issue (6): 799-807.doi: 10.19562/j.chinasae.qcgc.2021.06.002
收稿日期:
2020-11-20
出版日期:
2021-06-25
发布日期:
2021-06-29
通讯作者:
陈奔
E-mail:chenben99@whut.edu.cn
基金资助:
Received:
2020-11-20
Online:
2021-06-25
Published:
2021-06-29
Contact:
Ben Chen
E-mail:chenben99@whut.edu.cn
摘要:
质子交换膜燃料电池作为车载新型动力源具有广阔的应用前景而备受关注。流场板是燃料电池的核心部件之一,起分配反应气体、移除水分与杂质和传导电子等作用。目前对质子交换膜燃料电池流场方面的研究,大多针对常规流道进行了尺寸和流场布置方式的优化,部分研究在流道内部添加不同形式的堵块以增强气体传质,或将多孔介质材料应用于流场板,或设计新型的三维网格流场结构,通过此类方式来优化燃料电池的水热管理,强化传质效果以提高燃料电池的性能。本文中对这些研究进行归纳总结,并得出若干结论。
刘英杰,陈奔. 质子交换膜燃料电池流场强化传质研究进展[J]. 汽车工程, 2021, 43(6): 799-807.
Yingjie Liu,Ben Chen. Research Progress in Mass Transfer Enhancement of Flow Field in Proton Exchange Membrane Fuel Cell[J]. Automotive Engineering, 2021, 43(6): 799-807.
1 | SHARAF O Z, ORHAN M F. An overview of fuel cell technology: fundamentals and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853. |
2 | WU H W. A review of recent development: transport and performance modeling of PEM fuel cells[J]. Applied Energy, 2016, 165: 81-106. |
3 | 赵俊杰,涂正凯.高温车用燃料电池的发展及现状综述[J].化工进展, 2020, 39(5): 1722-1733. |
ZHAO J J, TU Z K. Review on the development and present situation of high temperature vehicle fuel cell[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1722-1733. | |
4 | JIAO K, LI X. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy & Combustion Science, 2011, 37(3): 221-291. |
5 | 杜青,李雅楠,牛志强,等.压缩气体扩散层微观结构中氧气传输过程的研究[J].天津大学学报(自然科学与工程技术版),2020, 53(11):1175-1182. |
DU Q, LI Y N, NIU Z Q, et al. Investigation of oxygen transport in the microstructures of the compressed gas diffusion layer[J]. Journal of Tianjin University (Science and Technology), 2020, 53(11): 1175-1182. | |
6 | 李桦. 一种采用新型进气方式的质子交换膜燃料电池的性能研究[D].天津:天津大学, 2012. |
LI H. The study on a new pemfc humidification method[D]. Tianjin: Tianjin University, 2012. | |
7 | ASHRAFI M, SHAMS M. The effects of flow⁃field orientation on water management in PEM fuel cells with serpentine channels[J]. Applied Energy,2017,208: 1083-1096. |
8 | 赵强,郭航,叶芳,等.质子交换膜燃料电池流场板研究进展[J].化工学报,2020,71(5):1943-1963. |
ZHAO Q, GUO H, YE F, et al. State of the art of flow field plates of proton exchange membrane fuel cells[J]. CIESC Journal, 2020, 71(5): 1943-1963. | |
9 | 陈士忠,刘健,陈宁,等. PEM燃料电池流场形状研究现状[J].可再生能源,2014,32(12):1908-1916. |
CHEN S Z, LIU J, CHEN N, et al. Research status on flow feild of PEM fuel cell[J]. Renewable Energy Resources, 2014, 32(12): 1908-1916. | |
10 | YAN W M, LI H Y, CHIU P C, et al. Effects of serpentine flow field with outlet channel contraction on cell performance of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2008, 178(1): 174-180. |
11 | CHEN S, XIA Z, ZHANG X, et al. Numerical studies of effect of interdigitated flow field outlet channel width on PEM fuel cell performance[J]. Energy Procedia, 2019, 158:1678-1684. |
12 | KUMAR R R, SURESH S, SUTHAKAR T, et al. Experimental investigation on PEM fuel cell using serpentine with tapered flow channels[J]. International Journal of Hydrogen Energy, 2020, 45(31): 15642-15649. |
13 | CHOWDHURY M Z, AKANSU Y E. Novel convergent⁃divergent serpentine flow fields effect on PEM fuel cell performance[J]. International Journal of Hydrogen Energy, 2017, 42(40): 1-9. |
14 | WANG X D, HUANG Y X, CHENG C H, et al. An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4247-4257. |
15 | CHOWDHURY M Z, GENC O, TOROS S. Numerical optimization of channel to land width ratio for PEM fuel cell[J]. International Journal of Hydrogen Energy,2018, 43(23): 10798-10809. |
16 | 孟庆然,田爱华,陈海伦,等.质子交换膜燃料电池流道尺寸的数值模拟[J].吉林化工学院学报,2020, 37(3): 48-52. |
MENG Q R, TIAN A H, CHEN H L, et al. Numerical simulation of flow channel size of proton exchange membrane fuel cell[J]. Journal of Jilin Institute of Chemical Technology, 2020, 37(3): 48-52. | |
17 | HSIEH S S, CHU K M. Channel and rib geometric scale effects of flowfield plates on the performance and transient thermal behavior of a micro⁃PEM fuel cell[J]. Journal of Power Sources, 2007, 173(1): 222-232. |
18 | KERKOUB Y, BENZAOUI A, Haddad F, et al. Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell[J]. Energy Conversion and Management, 2018, 174: 260-275. |
19 | RAHIMI-ESBO M, RANJBAR A A, RAMIAR A, et al. Improving PEM fuel cell performance and effective water removal by using a novel gas flow field[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3023-3037. |
20 | ATYABI S A, AFSHARI E. Three⁃dimensional multiphase model of proton exchange membrane fuel cell with Honeycomb flow field at the cathode side[J]. Journal of Cleaner Production, 2019, 214: 738-748. |
21 | BADDURI S R, SRINIVASULU G N, RAO S S. Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 824-831. |
22 | AFSHARI E, ZIAEI-RAD M, DEHKORDI M M. Numerical investigation on a novel zigzag⁃shaped flow channel design for cooling plates of PEM fuel cells[J]. Journal of the Energy Institute, 2017, 90(5): 752-763. |
23 | 刘志超.本田FCX Clarity燃料电池汽车的动力总成技术[J].汽车维修与保养, 2020(5): 66-68. |
LIU Z C. Powertrain technology of Honda FCX Clarity fuel cell vehicle[J]. Automobile Repair and Maintenance, 2020(5): 66-68. | |
24 | 沈俊. 基于强化传质的燃料电池流场优化及水热管理研究[D]. 武汉:华中科技大学, 2018. |
SHEN J. Study on optimal design of flow field and water⁃heat management of PEMFC[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
25 | BILGILI M, BOSOMOIU M, TSOTRIDIS G. Gas flow field with obstacles for PEM fuel cells at different operating conditions[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2303-2311. |
26 | HEIDARY H, KERMANI M J, PRASAD A K, et al. Numerical modelling of in⁃line and staggered blockages in parallel flowfield channels of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2265-2277. |
27 | HEIDARY H, KERMANI M J, ADVANI S G, et al. Experimental investigation of in⁃line and staggered blockages in parallel flowfield channels of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6885-6893. |
28 | HEIDARY H, KERMANI M J, DABIR B. Influences of bipolar plate channel blockages on PEM fuel cell performances[J]. Energy Conversion & Management, 2016, 124: 51-60. |
29 | EBRAHIMZADEH A A, KHAZAEE I, FASIHFAR A. Numerical investigation of dimensions and arrangement of obstacle on the performance of PEM fuel cell[J]. Heliyon, 2018, 4(11): e00974. |
30 | EBRAHIMZADEH A A, KHAZAEE I, FASIHFAR A. Experimental and numerical investigation of obstacle effect on the performance of PEM fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 141: 891-904. |
31 | PERNG S W, WU H W, WANG R H. Effect of modified flow field on non⁃isothermal transport characteristics and cell performance of a PEMFC[J]. Energy Conversion & Management, 2014, 80: 87-96. |
32 | GHANBARIAN A, KERMANI M J. Enhancement of PEM fuel cell performance by flow channel indentation[J]. Energy Conversion & Management, 2016, 110: 356-366. |
33 | YIN Y, WU S, QIN Y, et al. Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell[J]. Applied Energy, 2020, 271: 115257. |
34 | WANG X, QIN Y, WU S, et al. Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2020, 457: 228034. |
35 | DONG P, XIE G, NI M. The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell[J]. Energy, 2020, 206: 117977. |
36 | WAN Z, QUAN W, YANG C, et al. Optimal design of a novel M⁃like channel in bipolar plates of proton exchange membrane fuel cell based on minimum entropy generation[J]. Energy Conversion and Management, 2020, 205: 112386. |
37 | CHEN X, YU Z, YANG C, et al. Performance investigation on a novel 3D wave flow channel design for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 46(19): 11127-11139. |
38 | LI W, ZHANG Q, WANG C, et al. Experimental and numerical analysis of a three⁃dimensional flow field for PEMFCs[J]. Applied Energy, 2017, 195: 278-288. |
39 | CAI G, LIANG Y, LIU Z, et al. Design and optimization of bio-inspired wave⁃like channel for a PEM fuel cell applying genetic algorithm[J]. Energy, 2020, 192: 116670. |
40 | TSENG C J, HEUSH Y J, CHIANG C J, et al. Application of metal foams to high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16196-16204. |
41 | JO A, JU H. Numerical study on applicability of metal foam as flow distributor in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2018, 43(30): 14012-14026. |
42 | AZARAFZA A, ISMAIL M S, REZAKAZEMI M, et al. Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell[J]. Renewable and Sustainable Energy Reviews, 2019, 116:109420. |
43 | AFSHARI E, MOSHARAF⁃DEHKORDI M, RAJABIAN H. An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor[J]. Energy, 2017, 118: 705-715. |
44 | HUO S, COOPER N J, SMITH T L, et al. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor[J]. Applied Energy, 2017, 203:101-114. |
45 | WILBERFORCE T, KHATIB F N, IJAODOLA O S, et al. Numerical modelling and CFD simulation of a polymer electrolyte membrane (PEM) fuel cell flow channel using an open pore cellular foam material[J]. The Science of the Total Environment, 2019, 678: 728-740. |
46 | TSAI B T , TSENG C J , LIU Z S , et al. Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13060-13066. |
47 | TSENG C J, TSAI B T, LIU Z S, et al. A PEM fuel cell with metal foam as flow distributor[J]. Energy Conversion & Management, 2012, 62: 14-21. |
48 | BAROUTAJI A, CARTON J G, STOKES J, et al. Application of open pore cellular foam for air breathing PEM fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25630-25638. |
49 | BAO Z, NIU Z, JIAO K. Numerical simulation for metal foam two⁃phase flow field of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6229-6244. |
50 | CARTON J G, OLABI A G. Three⁃dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates[J]. Energy, 2016, 136: 185-195. |
51 | KARTHIKEYAN M, KARTHIKEYAN P, MUTHUKUMAR M, et al. Adoption of novel porous inserts in the flow channel of pern fuel cell for the mitigation of cathodic flooding[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7863-7872. |
52 | BAIK K D, LEE E H, YOON H, et al. Effect of multi⁃hole flow field structure on the performance of H2/O2 polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25894-25904. |
53 | WANG A, YUAN W, HUANG S, et al. Structural effects of expanded metal mesh used as a flow field for a passive direct methanol fuel cell[J]. Applied Energy, 2017, 208: 184-194. |
54 | YUAN W, SU X, ZHUANG Z, et al. Forced under⁃rib water removal by using expanded metal mesh as flow fields for air⁃breathing direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19711-19720. |
55 | FAN L, NIU Z, ZHANG G, et al. Optimization design of the cathode flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 171: 1813-1821. |
56 | YOSHIDA T, KOJIMA K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. Electrochemical Society Interface, 2015, 24(2): 45-49. |
57 | BAO Z, NIU Z, JIAO K. Analysis of single⁃and two⁃phase flow characteristics of 3⁃D fine mesh flow field of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2019, 438: 226995. |
[1] | 陶阿邦,陶建建,魏学哲. PEMFC冷启动过程阻抗谱及特征频率分析[J]. 汽车工程, 2024, 46(2): 269-280. |
[2] | 袁新杰,刘芳,侯中军. 基于GA-PSO-Otsu算法的质子交换膜燃料电池催化层孔结构自适应识别[J]. 汽车工程, 2023, 45(9): 1702-1709. |
[3] | 王万腾,李楠,白雪宜,杨抖,栗航,李贵敬. 气体扩散层分层设计对PEMFC电堆性能影响研究[J]. 汽车工程, 2023, 45(9): 1720-1727. |
[4] | 王俊峰,陈吉清,兰凤崇,刘青山,曾常菁. 燃料电池模型多尺度参数双代价函数的全局灵敏度分析[J]. 汽车工程, 2023, 45(3): 393-401. |
[5] | 吕平,孙昕,许有伟,张宝,徐家慧,邢丹敏. 车用燃料电池堆低温停机吹扫试验研究[J]. 汽车工程, 2023, 45(11): 2123-2129. |
[6] | 陈吉清,曾常菁,周云郊,兰凤崇,刘青山. 质子交换膜燃料电池五边形挡板流场结构优化与性能改进[J]. 汽车工程, 2023, 45(10): 1862-1875. |
[7] | 刘青山,兰凤崇,陈吉清,王俊峰,曾常菁. 燃料电池气体扩散层纤维孔隙特性对液态水传输的影响分析[J]. 汽车工程, 2022, 44(7): 1069-1080. |
[8] | 赵阳,叶康,孙汉乔,胡尊严,徐梁飞,李建秋,欧阳明高. 铝基复合材料制氢性能与安全性研究[J]. 汽车工程, 2022, 44(5): 730-735. |
[9] | 王亚雄,王轲轲,钟顺彬,何洪文,王薛超. 面向耐久性提升的车用燃料电池系统电控技术研究进展[J]. 汽车工程, 2022, 44(4): 545-559. |
[10] | 赵鑫,陈光,张妍懿. 运行工况对PEMFC性能与水含量的影响分析[J]. 汽车工程, 2022, 44(3): 379-384. |
[11] | 刘旭东,魏学哲,陶建建. PEMFC分区电流测量的关键影响因素分析[J]. 汽车工程, 2021, 43(8): 1152-1160. |
[12] | 常九健,王晓林,方建平,谢地林,王晨. 质子交换膜燃料电池阴阳极压力控制策略研究[J]. 汽车工程, 2021, 43(10): 1466-1471. |
[13] | 周苏, 胡哲, 谢非. 车用质子交换膜燃料电池空气供应系统自适应解耦控制方法研究[J]. 汽车工程, 2020, 42(2): 172-177. |
[14] | 方川, 黄海燕, 徐梁飞, 李建秋, 洪坡, 江宏亮, 赵兴旺, 胡尊严. 一种多功能燃料电池堆实验台的研发*[J]. 汽车工程, 2019, 41(4): 361-365. |
|