汽车工程 ›› 2023, Vol. 45 ›› Issue (9): 1702-1709.doi: 10.19562/j.chinasae.qcgc.2023.09.018

所属专题: 新能源汽车技术-动力电池&燃料电池2023年

• • 上一篇    下一篇

基于GA-PSO-Otsu算法的质子交换膜燃料电池催化层孔结构自适应识别

袁新杰,刘芳,侯中军()   

  1. 上海捷氢科技股份有限公司,上海 201804
  • 收稿日期:2023-01-04 修回日期:2023-02-24 出版日期:2023-09-25 发布日期:2023-09-23
  • 通讯作者: 侯中军 E-mail:hou_zhongjun@shpt.com

Self-adaptive Porous Structure Detection of the Catalyst Layer in PEMFCs Based on GA-PSO-Otsu Algorithm

Xinjie Yuan,Fang Liu,Zhongjun Hou()   

  1. Shanghai Hydrogen Propulsion Technology Co. ,Ltd. ,Shanghai 201804
  • Received:2023-01-04 Revised:2023-02-24 Online:2023-09-25 Published:2023-09-23
  • Contact: Zhongjun Hou E-mail:hou_zhongjun@shpt.com

摘要:

车载质子交换膜燃料电池催化层的孔结构识别效率低、精度差且实验要求严格,无法适应日趋规模化的行业发展体系,因此针对该问题,本文提出基于遗传粒子群的最大化类间方差(GA-PSO-Otsu)优化算法,实现对催化层扫描电镜图孔径分布和孔隙率高效、精确且自适应的识别和测算。首先,协同引入高斯卷积核与二值化阈值最大化类间方差,有效降低噪声和手动调参对精度和效率的影响,实现自动化去噪和孔结构识别;其次,进一步提出遗传粒子群算法,有效解决传统方法遍历参数耗时长和易陷入局部优化的问题,兼具高精度和高效率的优点;最后,通过对催化层结构和灰度分布差异明显的扫描电镜图的对比实验验证,表明该方法具备良好的鲁棒性、自适应性和实用性,与遍历所有参数的传统Otsu算法的孔隙率误差小于0.5%,测算耗时降低约26.2%。

关键词: 质子交换膜燃料电池(PEMFC), 催化层孔径分布, 催化层孔隙率, 遗传算法(GA), 粒子群算法(PSO), 最大化类间方差法(Otsu)

Abstract:

The low efficiency, low accuracy and strict experimental requirements for the detection of the proton exchange membrane fuel cell (PEMFC) catalyst layer porous structure can’t adapt to the increasingly large-scale industry development system. Therefore, to address the problem, this paper innovatively proposes the genetic algorithm-particle swarm optimization-Otsu (GA-PSO-Otsu) algorithm to realize efficient, accurate and self-adaptive identification of pore size distribution and porosity calculation of the scanning electron microscope (SEM) of the catalyst layer. Firstly, Gaussian convolution and binary threshold are combined to maximize the inter-class variance between the foreground and background to effectively reducethe impact of noise and manual adjustment of parameters on accuracy and efficiency, which ensures automatic noise reduction and pore structure detection. Furthermore, the genetic algorithm based particle swarm optimization method is proposed to solve the problem of long time consuming caused by traverse parameters and to avoidlocal optimization, with the advantages of high accuracy and high efficiency. Lastly, the comparative analysis of different algorithms applied on various PEMFC catalyst SEMs with different component ratios and gray scales indicate that the proposed method has high robustness, self-adaptiveness and practicability. Compared with the traditional Otsu approach which traverses all parameters, the porosity error of the proposed method is less than 0.5% and the calculation time is significantly reduced by 26.2%.

Key words: proton exchange membrane fuel cell (PEMFC), catalyst layer pore size distribution, catalyst layer porosity, genetic algorithm (GA), particle swarm optimization (PSO), Otsu