汽车工程 ›› 2024, Vol. 46 ›› Issue (4): 626-633.doi: 10.19562/j.chinasae.qcgc.2024.04.008
• • 上一篇
蔡开源1,王巍1,赵自庆1,马骁1,齐运亮1,李莉2(),王志1
收稿日期:
2023-09-20
修回日期:
2023-10-19
出版日期:
2024-04-25
发布日期:
2024-04-24
通讯作者:
李莉
E-mail:liull76@163.com
基金资助:
Kaiyuan Cai1,Wei Wang1,Ziqing Zhao1,Xiao Ma1,Yunliang Qi1,Li Li2(),Zhi Wang1
Received:
2023-09-20
Revised:
2023-10-19
Online:
2024-04-25
Published:
2024-04-24
Contact:
Li Li
E-mail:liull76@163.com
摘要:
针对双碳目标,应用低碳/零碳燃料是实现内燃机高效清洁燃烧的有效途径。本研究基于一个双燃料柴油机台架开展,缸内直喷燃料分别选用柴油、生物柴油/汽油混合燃料(BG70)和生物柴油/汽油/乙醇混合燃料(BG50E20);氨为进气道喷射,能量替代率为0~28%。试验工况为1 200 r/min、0.8 MPa指示平均有效压力(IMEP)。对比分析了不同燃料的一氧化碳(CO)、总碳氢(THC)、氮氧化物(NO x )排放以及颗粒物粒径分布。结果表明:单燃料模式下,BG70和BG50E20的指示热效率高于柴油。BG70的CO排放相比柴油降低30%,但THC和NO x 排放在3种燃料中最高。BG70和BG50E20的总颗粒物数量(TPN)排放低于柴油。相比各燃料单燃料模式的燃烧与排放性能,添加氨后的3种燃料的指示热效率降低1%~2%; CO排放增加约1倍;柴油和BG70的NO x 排放减少接近50%,BG50E20的NO x 排放减少约30%。另外,氨的加入对BG70和BG50E20的TPN有显著影响,当氨能量替代率从0增长至28%时,BG70的TPN排放增加20倍。
蔡开源,王巍,赵自庆,马骁,齐运亮,李莉,王志. 氨-生物燃料双燃料发动机的燃烧与排放特性[J]. 汽车工程, 2024, 46(4): 626-633.
Kaiyuan Cai,Wei Wang,Ziqing Zhao,Xiao Ma,Yunliang Qi,Li Li,Zhi Wang. Combustion and Emission Characteristics of an Ammonia-Biofuel Dual-Fuel Engine[J]. Automotive Engineering, 2024, 46(4): 626-633.
1 | 国际能源署数据库[DB/OL]. https://wds.iea.org/wds/ReportFolders/reportFolders.aspx. |
2 | ALTARAZI Y, TALIB A, YU J, et al. Effects of biofuel on engines performance and emission characteristics: a review[J]. Energy, 2022, 238: 121910. |
3 | VERMA T N, SHRIVASTAVA P, RAJAK U, et al. A comprehensive review of the influence of physicochemical properties of biodiesel on combustion characteristics, engine performance and emissions[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(4): 510-533. |
4 | DANGOL N, SHRESTHA D S, DUFFIELD J A. Life-cycle energy, GHG and cost comparison of camelina-based biodiesel and biojet fuel[J]. Biofuels, 2020, 11(4): 399-407. |
5 | ABDUL-MANAN A F N. Lifecycle GHG emissions of palm biodiesel: unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)[J]. Energy Policy, 2017, 104: 56-65. |
6 | WU W, WANG P H, LEE D J, et al. Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions[J]. Applied Energy, 2017, 197: 63-82. |
7 | PURUSHOTHAMAN K, NAGARAJAN G. Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil[J]. Renewable Energy, 2009, 34(1): 242-245. |
8 | GAD M S, EL-SHAFAY A S, HASHISH H. Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from jatropha seeds[J]. Process Safety and Environmental Protection, 2021, 147: 518-526. |
9 | MING T C, RAMLI N, LYE O T, et al. Strategies for decreasing the pour point and cloud point of palm oil products[J]. European Journal of Lipid Science and Technology, 2005, 107: 505-512. |
10 | KODATE S V, RAJU P S, YADAV A K, et al. Investigation of preheated VIME biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine[J]. Energy, 2021, 231: 120874. |
11 | CHEN H, HE J J, CHEN Y S, et al. Performance of a common rail diesel engine using biodiesel of waste cooking oil and gasoline blend[J]. Journal- Energy Institute, 2018, 91: 856-866. |
12 | YU W, CHENG M H, WRIGHT M M. Lifecycle energy consumption and greenhouse gas emissions from corncob ethanol in China[J]. Biofuels Bioproducts and Biorefining, 2018, 12: 1037-1046. |
13 | DING N, YANG Y, CAI H, et al. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in north China[J]. Journal of Cleaner Production, 2017, 161: 335-344. |
14 | ZANG G Y, SUN P P, ELGOWAINY A, et al. Life cycle analysis of electrofuels: Fischer-Tropsch fuel production from hydrogen and corn ethanol byproduct CO2[J]. Environmental Science and Technology, 2021, 55(6): 3888-3897. |
15 | 王秉刚. 中国清洁汽车行动的成就与展望[J]. 汽车工程, 2005, 27(6): 643-647. |
16 | HANSEN A C, ZHANG Q, LYNE P. Ethanol-diesel fuel blends-a review[J]. Bioresource Technology, 2005, 96(3): 277-285. |
17 | 杜宝国, 隆武强, 魏胜利, 等. 乙醇柴油汽油混合燃料的燃烧与排放特性[J]. 汽车工程, 2008, 30(3): 191-196. |
DU B G, LONG W Q, WEI S L, et al. A study on the combustion and emission characteristics of a diesel engine with ethanol-diesel-gasoline blends[J]. Automotive Engineering, 2008, 30(3): 191-196. | |
18 | KWANCHAREON P, LUENGNARUEMITCHAI A, JAI-IN S. Solubility of a diesel-biodiesel-ethanol blend, its fuel properties, and its emission characteristics from diesel engine[J]. Fuel, 2007, 86: 1053-1061. |
19 | WANG J X, WU F J, XIAO J H, et al. Oxygenated blend design and its effects on reducing diesel particulate emissions[J]. Fuel, 2009, 88(10): 2037-2045. |
20 | YILMAZ N, VIGIL F M, DONALDSON A B, et al. Investigation of CI engine emissions in biodiesel-ethanol-diesel blends as a function of ethanol concentration[J]. Fuel, 2014, 115: 790-793. |
21 | GRAY J T, JR. E D, MECKEL N T, et al. Ammonia fuel - engine compatibility and combustion [C]. SAE Paper 660156. |
22 | REITER A J, KONG S C. Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions[J]. Energy & Fuels, 2008, 22(5): 2963-2971. |
23 | REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
24 | GILL S S, CHATHA G S, TSOLAKIS A, et al. Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia[J]. International Journal of Hydrogen Energy, 2012, 37(7): 6074-6083. |
25 | NIKI Y. Reductions in unburned ammonia and nitrous oxide emissions from an ammonia-assisted diesel engine with early timing diesel pilot injection[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(9): 091014. |
26 | NIKI Y, NITTA Y, SEKIGUCHI H, et al. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 061020. |
27 | YOUSEFI A, GUO H S, DEV S, et al. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine[J]. Fuel, 2022, 316: 123412. |
28 | MI S J, WU H Q, PEI X Z, et al. Potential of ammonia energy fraction and diesel pilot-injection strategy on improving combustion and emission performance in an ammonia-diesel dual fuel engine[J]. Fuel, 2023, 343: 127889 |
29 | JIN S Y, WU B Y, ZI Z, et al. Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine[J]. Fuel, 2023, 314: 127668. |
30 | PEI Y Q, WANG D C, JIN S Y, et al. A quantitative study on the combustion and emission characteristics of an Ammonia-Diesel Dual-fuel (ADDF) engine[J]. Fuel Processing Technology, 2023, 250: 107906. |
31 | NADIMI E, PRZYBYLA G, EMBERSON D, et al. Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine[J]. International Journal of Energy Research, 2022, 44(11): 15347-15361. |
32 | ELUMALAI R, RAVI K. Strategy to reduce carbon emissions by adopting ammonia-algal biodiesel in RCCI engine and optimize the fuel concoction using RSM methodology[J]. International Journal of Hydrogen Energy, 2022,47(94): 39701-39718. |
33 | RAMACHANDRAN E, KRISHNAIAH R, VENKATESAN E P, et al. Investigation on ammonia-biodiesel fueled RCCI combustion engine using a split injection strategy[J]. ACS Omega, 2023,8(34): 30990-31001. |
34 | FAN Q H, WANG Z, QI Y L, et al. Investigating auto-ignition behavior of n-heptane/iso-octane/ethanol mixtures for gasoline surrogates through rapid compression machine measurement and chemical kinetics analysis[J]. Fuel, 2019, 241: 1095-1108. |
35 | 韩斌. 柴油/棕榈油/汽油混合燃料燃烧与排放特性研究[D]. 西安: 长安大学, 2019: 25. |
HAN B. Study on combustion and emission characteristics of diesel/palm oil/gasoline blend fuel[D]. Xi’an: Chang’an University, 2019: 25. | |
36 | 左磊. 柴油机燃用加氢生物柴油-乙醇-柴油的燃烧与排放特性研究[D]. 镇江: 江苏大学, 2020: 27. |
ZUO L. Combustion and emission of diesel engine fueled with hydrogenated biodiesel-ethanol-diesel ternary blend[D]. Zhenjiang: Jiangsu University, 2020: 27. | |
37 | 肖合林, 李胜君, 薛琪, 等. EGR 率对乙醇/生物柴油混合燃料燃烧及排放特性的影响[J]. 燃烧科学与技术, 2019, 25(3): 237-243. |
XIAO H L, LI S J, XUE Q, et al. Effects of EGR rate on combustion and emission characteristics of blends of ethanol and biodiesel[J]. Journal of Combustion Science and Technology, 2019, 25(3): 237-243. | |
38 | 马百坦, 吕阳, 康哲. 车用替代燃料分析与展望[J]. 重型汽车, 2022(1): 3. |
39 | KALGHATGI G T. Auto-ignition quality of practical fuels and implications for fuel requirements of future SI and HCCI engines[C]. SAE Paper 2005-01-0239. |
40 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
41 | 李博文. 含氧宽馏分燃料分子结构与颗粒物排放相关性的基础研究[D]. 北京: 清华大学, 2020: 80-81. |
LI Bowen. Fundamental investigation on the correlation between soot emissions and molecular structure of oxygenated wide distillation fuel[D]. Beijing: Tsinghua University, 2020: 80-81. | |
42 | DONG H, WANG C H, DUAN Y Z, et al. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system[J]. Energy, 2014, 75: 513-519. |
43 | FENG Z H, ZHAN C, TANG C L, et al. Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system[J]. Energy, 2016, 112: 549-561. |
44 | 贾长凯, 张登攀, 赵根锐, 等. 典型原料生物柴油燃烧颗粒物微观结构及氧化特性[J]. 汽车工程, 2022, 44(1): 44-51. |
JIA C K, ZHANG D P, ZHAO G R, et al. Micro-structure and oxidation characteristics of particulate matter of typical biodiesel combustion[J]. Automotive Engineering, 2022, 44(1): 44-51. | |
45 | CHENG X B, LI Y, XU Y S, et al. Study of effects of ammonia addition on soot formation characteristics in n-heptane co-flow laminar diffusion flames[J]. Combustion and Flame, 2022, 235: 111683. |
[1] | 罗徐霖,李岩松,崔明利,孔令逊,李雪松,许敏. 定容燃烧弹内闪沸燃烧研究[J]. 汽车工程, 2024, 46(3): 476-482. |
[2] | 方娜,陈涛,管永超,方勇,万建,刘成,田颖,秦建宾,王小涛,康文霞. 轻型汽油车NH3排放研究[J]. 汽车工程, 2024, 46(3): 483-488. |
[3] | 吕立群, 徐龙, 尹航, 杨杨, 葛蕴珊. 重型柴油车实际道路NO x 排放分析方法研究[J]. 汽车工程, 2024, 46(1): 151-160. |
[4] | 李晓娜,解方喜,窦慧莉,刘江唯,刘宇. 气门重叠角对GDI发动机性能和微粒排放的影响[J]. 汽车工程, 2023, 45(4): 654-662. |
[5] | 徐胜龙,宋军,袁伟. 基于耐久老化车辆的实际道路行驶NO x 排放控制方法研究[J]. 汽车工程, 2023, 45(4): 663-671. |
[6] | 杨淼,林学东,李德刚,刘迎澍. 柴油机缸内两相流卷吸效应对燃烧模式的影响[J]. 汽车工程, 2023, 45(4): 672-680. |
[7] | 谭丹,王亚超,谭建伟,李家琛,王昌钰,葛蕴珊. 不同环境温度下E10轻型车CO2排放研究[J]. 汽车工程, 2023, 45(3): 451-458. |
[8] | 王耀东,苏岩,郎茂春,李小平,解方喜. 火花辅助压燃准维燃烧模型的建立及应用[J]. 汽车工程, 2023, 45(11): 2130-2138. |
[9] | 闫博文,Waters Benjamin,Pendlebury Ken,胡铁刚,张家祥,杨晓前,蒲运平. 三火花塞点火系统对混动专用发动机稀燃性能影响试验研究[J]. 汽车工程, 2023, 45(11): 2139-2147. |
[10] | 闫博文,马天宇,蒲运平,胡铁刚,邓伟,蒋平,聂相虹. 混动发动机在不同水温下的喷油控制策略影响试验研究[J]. 汽车工程, 2022, 44(9): 1394-1399. |
[11] | 王俊,申立中,毕玉华,雷基林. 不同海拔下基于VNT驱动的EGR对轻型柴油机燃烧与排放的影响[J]. 汽车工程, 2022, 44(7): 1088-1097. |
[12] | 张立军,高泽,余海燕. 基于全生命周期分析的白车身选材方法[J]. 汽车工程, 2022, 44(6): 945-952. |
[13] | 王巍,赵自庆,蔡开源,刘奕,刘尚,刘伟,王志. 主动射流点火天然气发动机的燃烧控制策略[J]. 汽车工程, 2022, 44(12): 1919-1925. |
[14] | 詹炜鹏,王震坡,邓钧君,刘鹏,崔丁松,李海涛. 基于大数据的电动汽车行驶阶段碳减排影响因素分析[J]. 汽车工程, 2022, 44(10): 1581-1590. |
[15] | 蒋晓寒,谭建伟,徐长建,葛蕴珊,郝利君,王欣,李家琛. 基于粒径分布的直喷汽油车颗粒物排放特性研究[J]. 汽车工程, 2022, 44(10): 1609-1618. |
|