Automotive Engineering ›› 2025, Vol. 47 ›› Issue (8): 1546-1558.doi: 10.19562/j.chinasae.qcgc.2025.08.011
Peng Xie(
),Zhenhao Cai,Ruilin Luo,Jingfei Wang,Cheng Lin
Received:2025-04-11
Revised:2025-04-30
Online:2025-08-25
Published:2025-08-18
Contact:
Peng Xie
E-mail:p.xie@bit.edu.cn
Peng Xie,Zhenhao Cai,Ruilin Luo,Jingfei Wang,Cheng Lin. Research on Thermal Management System of Electric Buses for Extreme Cold Regions Based on Thermal Energy Storage with Metallic Phase Change Material[J].Automotive Engineering, 2025, 47(8): 1546-1558.
| [1] | 国务院办公厅. 新能源汽车产业发展规划(2021—2035年)[EB/OL]. (2020-10-20)[2025-03-08]. https://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm. |
| General Office of the State Council. New energy automobile industry development plan(2021—2035)[EB/OL]. (2020-10-20)[2025-03-08]. https://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm. | |
| [2] | 林程, 田雨, 于潇, 等. 高性能全气候电动客车的关键技术[J]. 科技导报, 2022, 40(14): 41-50. |
| LIN C, TIAN Y, YU X, et al. Key technologies of high-performance all-climate electric bus[J]. Science & Technology Review, 2022, 40(14): 41-50. | |
| [3] | KNOTE T. Analysis of the application of electric heaters on electric buses[R]. Bremen: Fraunhofer-IVI, 2017. |
| [4] | HAN X, ZOU H, WU J, et al. Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus[J/OL]. Renewable Energy, 2020, 152: 835-848. |
| [5] | ZHANG Z, WANG D, ZHANG C, et al. Electric vehicle range extension strategies based on improved AC system in cold climate-a review[J/OL]. International Journal of Refrigeration, 2018, 88: 141-150. |
| [6] | 季宏增, 蔡景羊, 裴金晨, 等. 电动汽车热泵PTC耦合制热策略研究[J]. 汽车工程, 2022, 44(10): 1563-1570, 1580. |
| JI H Z, CAI J Y, PEI J C, et al. Research on heat pump PTC coupling heating strategy for electric vehicle [J]. Automotive Engineering, 2022, 44(10): 1563-1570, 1580. | |
| [7] | 汪琳琳, 焦鹏飞, 王伟, 等. 新能源电动汽车低温热泵型空调系统研究[J]. 汽车工程, 2020, 42(12): 1744-1750, 1757. |
| WANG B B, JIAO P F, WANG W, et al. Key technologies of high-performance all-climate electric bus[J]. Automotive Engineering, 2020, 42(12): 1744-1750, 1757. | |
| [8] | LIU Z, MA L, QIAN Z. Experimental study on performance of the trans-critical CO2 heat pump with flash tank vapor injection at variable revolution ratio conditions[J]. Journal of Cleaner Production, 2023, 412: 137405. |
| [9] | WANG H, CAO F, JIA F, et al. Potential assessment of transcritical CO2 secondary loop heat pump for electric vehicles[J]. Applied Thermal Engineering, 2023, 224: 119921. |
| [10] | YU B, YANG J, WANG D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: 116147. |
| [11] | XIE P, QIAO G, LIN C, et al. Thermal energy storage for electric vehicles at low temperatures: concepts, systems, devices and materials[J]. Renewable and Sustainable Energy Reviews, 2022, 160. |
| [12] | GUR I, SAWYER K, PRASHER R. Searching for a better thermal battery[J]. SCIENCE, 2012, 335(6075): 1454-1455. |
| [13] | NARAYANAN S, LI X, YANG S, et al. Thermal battery for portable climate control[J]. Applied Energy, 2015, 149: 104-116. |
| [14] | NARAYANAN S, KIM H, UMANS A, et al. A thermophysical battery for storage-based climate control[J]. Applied Energy, 2017, 189: 31-43. |
| [15] | WANG M, WOLFE E, CRAIG T, et al. Design and testing of a thermal storage system for electric vehicle cabin heating[C]. SAE Paper 2016-01-0248. |
| [16] | EUROPEAN COMMISSION. Optimised and systematic energy management in electric vehicles[EB/OL]. (2022-08-15)[2025-03-10]. https://cordis.europa.eu/project/id/653514. |
| [17] | STAHL V, KRAFT W, VETTER P, et al. Simulative investigation of thermal capacity analysis methods for metallic latent thermal energy storage systems[J]. Energies, 2021, 14: 2241. |
| [18] | ZHAO W, LIN X, ZHANG T, et al. Large-scale energy storage for carbon neutrality: thermal energy storage for electrical vehicles[J]. Carbon Neutrality, 2024, 3(1): 30. |
| [19] | HONG J, SONG J, HAN U, et al. Performance investigation of electric vehicle thermal management system with thermal energy storage and waste heat recovery systems[J]. eTransportation, 2024, 20: 100317. |
| [20] | DREISSIGACKER V, BELIK S. High temperature solid media thermal energy storage system with high effective storage densities for flexible heat supply in electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 173-179. |
| [21] | ZHANG C, WU S, AN G, et al. Resorption thermal energy storage strategy based on CaCl2/MnCl2-NH3 working pair for battery electric vehicles[J]. Chemical Engineering Journal, 2022, 441: 136111. |
| [22] | FANG Z Z, ZHOU C, FAN P, et al. Metal hydrides based high energy density thermal battery[J]. Journal of Alloys and Compounds, 2015, 645: S184-S189. |
| [23] | MEIER K, KURTZ C, WECKERLE C, et al. Air-conditioning system for vehicles with on-board hydrogen[J]. Applied Thermal Engineering, 2017, 129. |
| [24] | KÖLBIG M, WECKERLE C, LINDER M, et al. Review on thermal applications for metal hydrides in fuel cell vehicles: operation modes, recent developments and crucial design aspects[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112385. |
| [25] | FLEMING E, WEN S, SHI L, et al. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior[J]. Applied Energy, 2013, 112: 160-169. |
| [26] | KUITUNEN S. Design and development process for rapid charge storage heaters for electric city buses[C]. 7th International Conference Thermal Management for EV/HEV. Berlin, 2018. |
| [27] | COSTA PEREIRA S C, KENISARIN M. A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111812. |
| [28] | ZHAO Y, LIU H, ZHAO C. Experimental study on the cycling stability and corrosive property of Al-Si alloys as phase change materials in high-temperature heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 203. |
| [29] | KRAFT W, NEES F, STAHL V, et al. Thermal high performance storages for electric bus heating - overview on the current state of development[C]. ENERSTOCK 2021. |
| [30] | 谢鹏, 金露, 谯耕. 一种金属相变电储热装置: CN202110470516.2[P]. 2022-12-06. |
| XIE P, JIN L, QIAO G. A thermal energy storage device made of meatal phase change material: CN202110470516.2 [P]. 2022-12-06. | |
| [31] | LUO C, XIE P, CHEN G, et al. Prototype design and experimental study of a metal alloy-based thermal energy storage system for heat supply in electric vehicles[J]. The Journal of Energy Storage, 2022, 51: 104393. |
| [32] | XIE P, YU X, LIN C, et al. Conceptual design and numerical analysis of a miscibility gap alloy-based solid-state thermal battery for electric vehicles[J]. Journal of Energy Storage, 2024, 86: 111389. |
| [33] | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
| [34] | LEE H, HWANG Y, SONG I, et al. Transient thermal model of passenger car’s cabin and implementation to saturation cycle with alternative working fluids[J]. Energy, 2015, 90: 1859-1868. |
| [35] | LIU T. Thermal management solutions for battery electric buses in cold climates[D]. Aalto University, 2019. |
| [36] | INCROPERA F P, DEWITT D P. Fundamentals of heat and mass transfer[M]. 5th ed. John Wiley & Sons,Inc, 2002. |
| [37] | 全国汽车标准化技术委员会客车分技术委员会. 客车空调系统技术条件: JT/T 216—2020[S]. 北京: 人民交通出版社, 2020. |
| Bus Sub-Technical Committee of National Automobile Standardization Technical Committee. Technical conditions of bus air conditioning system: JT/T 216—2020[S]. Beijing: People's Communications Press, 2020. | |
| [38] | RAWSON A J, KRAFT W, GLÄSEL T, et al. Selection of compatible metallic phase change materials and containers for thermal storage applications[J]. Journal of Energy Storage, 2020, 32: 101927. |
| [39] | 上海第一财经传媒有限公司. 不同城市的公交“一站地”差别有多大?[EB/OL]. (2017-02-13). https://zhuanlan.zhihu.com/p/25209621?from_voters_page=true. |
| Shanghai First Financial Media Co., Ltd. How much is the difference of bus "one stop" in different cities[EB/OL]. (2017-02-13)[2025-03-08]. https://zhuanlan.zhihu.com/p/25209621?from_voters_page=true. |
| [1] | Yingjiu Pan,Yi Xi,Yansen Liu,Wenpeng Fang,Wenshan Zhang. An Energy Consumption Prediction-Based Optimization Strategy for Eco-driving of Connected Electric Buses [J]. Automotive Engineering, 2025, 47(5): 839-850. |
| [2] | Guizhen Feng,Sihao Zhang,Shaohua Li,Pengyuan Li. The Comprehensive Model of Air Spring with Dynamically Adjustable Parameters and Dynamic Characteristics Analysis of Electric Bus [J]. Automotive Engineering, 2025, 47(4): 734-745. |
| [3] | Bangji Zhang,Xiang Lin,Bohuan Tan,Shaohua Wang,Mengyuan Jin Qiutan Zeng. Experimental Study on Vibration of a Pure Electric Bus with a Planetary Gearbox [J]. Automotive Engineering, 2021, 43(1): 129-135. |
| [4] | Ye Lezhi, Liang Chen, Li Desheng , Liu Zenggang. A Research on a New Type of Eddy-Current Retarding & Heating System for Electric Bus [J]. Automotive Engineering, 2019, 41(4): 475-480. |
| [5] | Zeng Xiaohua, Li Guanghan, Song Dafeng, Zhu Guanghai & Wang Yinshu. Analysis of Theoretical Fuel Consumption of Hybrid Electric System Based on Energy Calculation Model [J]. , 2019, 41(3): 266-274. |
| [6] | Xie Shaobo, Liu Tong, Li Huiling, Xin Zongke. A Study on Predictive Energy Management Strategy for a Plugin Hybrid Electric Bus Based on Markov Chain [J]. , 2018, 40(8): 871-877. |
| [7] | Xie Shaobo, Xin Zongke, Li Huiling, Liu Tong & Wei Lang. A Study on Coordinated Optimization on Battery Capacity and Energy Management Strategy for a Plug in Hybrid Electric Bus [J]. , 2018, 40(6): 625-. |
|
||