1 |
YANG L, YUE M, LIU Y C, et al. RBFNN based terminal sliding mode adaptive control for electric ground vehicles after tire blowout on expressway[J]. Applied Soft Computing, 2020, 92: 106304.
|
2 |
王英麟. 基于CarSim与UniTire的爆胎汽车动力学响应研究[D]. 长春:吉林大学,2007.
|
|
WANG Y L. Study on vehicle dynamic response to tire blow-out based on CarSim and UniTire[D]. Changchun: Jilin University, 2007.
|
3 |
LI A, CHEN Y, DU X, et al. Enhanced tire blowout modeling using vertical load redistribution and self-alignment torque[J]. ASME Letters in Dynamic Systems and Control, 2021, 1(1): 011001.
|
4 |
WANG F, CHEN H, GUO H Y, et al. Constrained H ∞ control for road vehicles after a tire blow-out[J]. Mechatronics, 2015, 30: 371-382.
|
5 |
LIU H, DENG W, ZONG C, et al. Development of active control strategy for flat tire vehicles[C]. SAE Paper 2014-01-0859.
|
6 |
TSENG N T, PELLE R G, CHANG J P, et al. Finite element simulation of destructive tire testing[J]. Tire Science and Technology, 1991, 19(1): 2-22.
|
7 |
ORENGO F, RAY M H, PLAXICO C A. Modeling tire blow-out in roadside hardware simulations using LS-DYNA[C]. ASME International Mechanical Engineering Congress and Exposition, 2003, 37300: 71-80.
|
8 |
MICHEL L, VADEAN A, BENOIT R. Tire burst phenomenon and rupture of a typical truck tire bead design[J]. Tire Science and Technology, 2011, 39(4): 270-283.
|
9 |
CAI Y Z, ZANG M Y, CHEN Y J, et al. Experiments and finite element simulations of a tyre blow-out process[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228(9):1116-1124.
|
10 |
蔡永周. 爆胎现象实验和有限元仿真方法研究[D]. 广州:华南理工大学,2014.
|
|
CAI Y Z. The research of experiment and finite element simulation method on tire blow-out phenomenton[D]. Guangzhou: South China University of Technology, 2014.
|
11 |
BOLARINWA E, OLATUNBOSUN O. Finite element simulation of the tyre burst test[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(11):1251-1258.
|
12 |
BEHROOZI M, OLATUNBOSUN O A, DING W. Finite element analysis of aircraft tyre–effect of model complexity on tyre performance characteristics[J]. Materials & Design, 2012, 35:810-819.
|
13 |
JEONG K M. Prediction of burst pressure of a radial truck tire using finite element analysis[J]. World Journal of Engineering and Technology, 2016, 4(2):228.
|
14 |
BOIS P D. A simplified approach to the simulation of rubber-like materials under dynamic loading [C]. Proceedings of the 4th European LS-DYNA users conference, Ulm, Germany. 2003, 1.
|
15 |
KOLLING S, BOIS P D, BENSON D J, et al. A tabulated formulation of hyperelasticity with rate effects and damage[J]. Computational Mechanics, 2007, 40(5):885-899.
|
16 |
LSTC.FCA.TIRE_MODELS.190906_V1.0.1567808159[EB/OL]. [2019-09-24]. https://ftp.lstc.com/user/lstc-tires/.
|
17 |
FENG W W, HALLQUIST J O. A failure criterion for polymers and soft biological materials[C]. 5th European LS-DYNA Users Conference Material Technology 2b-15, Birmingham, UK. 2005:25-26.
|
18 |
SHOKRIEH M M, MOSHREFZADEH-SANI H. On the constant parameters of Halpin-Tsai equation[J]. Polymer, 2016:14-20.
|
19 |
CHAMIS C C. Simplified composite micromechanics equations for strength, fracture toughness and environmental effects[J]. NASA Technical Memorandum, 1984.
|
20 |
BADU V, KULKARNI K, KANKANALAPALLI S, et al. Comparative analysis of occupant responses between LS-DYNA® Arbitrary Lagrange in Euler and (ALE) and structured-ALE (S-ALE) methods[C].15th International LS-DYNA Conference, 2018.
|
21 |
PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002, 11:479-517.
|