| [1] |
QU Y, HU H, LIU J, et al. Driver state monitoring technology for conditionally automated vehicles: review and future prospects[J]. IEEE Transactions on Instrumentation and Measurement, 2023.
|
| [2] |
刘中姐,赵治国,于勤.基于动态风险评估的车辆辅助驾驶行为决策[J].汽车工程,2024,46(11):2005-2016.
|
|
LIU Z J,ZHAO Z G,YU Q.Vehicle assisted driving behavior decision-making based on dynamic risk assessment[J]. Automotive Engineering, 2024,46(11):2005-2016.
|
| [3] |
ZHAO X, LI Z, ZHAO C, et al. Distraction-level recognition based on stacking ensemble learning for IVIS secondary tasks[J]. Expert Systems with Applications, 2024, 244: 122849.
|
| [4] |
唐小林,甘露,李国法,等.面向自动驾驶的大模型对齐技术:综述[J].汽车工程,2024,46(11):1937-1951.
|
|
TANG X L, GAN L, LI G F, et al. Large model alignment technology for autonomous driving: a review[J]. Automotive Engineering,2024,46(11):1937-1951.
|
| [5] |
孙剑,张赫,赵晓聪,等.面向自动驾驶测试的交互场景策略建模与仿真[J].汽车工程,2024,46(11):1962-1972.
|
|
SUN J,ZHANG H,ZHAO X C, et al. Interactive scenario strategy modeling and simulation for autonomous driving testing[J]. Automotive Engineering, 2024,46(11):1962-1972.
|
| [6] |
宗长富, 代昌华, 张东. 智能汽车的人机共驾技术研究现状和发展趋势[J]. 中国公路学报, 2021, 34(6): 214-237.
|
|
ZONG C F, DAI C H, ZHANG D. Research status and development trend of human-machine co-driving technology for intelligent vehicles[J]. China Journal of Highway and Transport, 2021, 34(6): 214-237.
|
| [7] |
LIN N, ZONG C, TOMIZUKA M, et al. An overview on study of identification of driver behavior characteristics for automotive control[J]. Mathematical Problems in Engineering, 2014, 2014(1): 569109.
|
| [8] |
OSIPOV A, PLESHAKOVA E, GATAULLIN S, et al. Deep learning method for recognition and classification of images from video recorders in difficult weather conditions[J]. Sustainability, 2022, 14(4): 2420.
|
| [9] |
YAN C, COENEN F, ZHANG B. Driving posture recognition by joint application of motion history image and pyramid histogram of oriented gradients[J]. International Journal of Vehicular Technology, 2014, 2014(1): 719413.
|
| [10] |
AL-DOORI S K S, TASPINAR Y S, KOKLU M. Distracted driving detection with machine learning methods by cnn based feature extraction[J]. International Journal of Applied Mathematics Electronics and Computers, 2021, 9(4): 116-121.
|
| [11] |
WANG Y, DING X, YUAN G, et al. Dual-cameras-based driver’s eye gaze tracking system with non-linear gaze point refinement[J]. Sensors, 2022, 22(6): 2326.
|
| [12] |
CHENG W, WANG X, MAO B. A multi-feature fusion algorithm for driver fatigue detection based on a lightweight convolutional neural network[J]. The Visual Computer, 2024, 40(4): 2419-2441.
|
| [13] |
胡宏宇, 黎烨宸, 张争光, 等. 基于多尺度骨架图和局部视觉上下文融合的驾驶员行为识别方法[J]. 汽车工程, 2024, 46(1): 1-8.
|
|
HU H G, LI Y C, ZHANG Z G, et al. Driver behavior recognition method based on multi-scale skeleton graph and local visual context fusion[J]. Automotive Engineering, 2024, 46(1): 1-8.
|
| [14] |
HU Y, LU M, LU X. Feature refinement for image-based driver action recognition via multi-scale attention convolutional neural network[J]. Signal Processing: Image Communication, 2020, 81: 115697.
|
| [15] |
XIAO W, LIU H, MA Z, et al. Attention-based deep neural network for driver behavior recognition[J]. Future Generation Computer Systems, 2022, 132: 152-161.
|
| [16] |
VASWANI A. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017.
|
| [17] |
赵霞, 李朝, 付锐, 等. 基于深度卷积-Tokens 降维优化视觉 Transformer 的分心驾驶行为实时检测[J]. 汽车工程, 2023, 45(6): 974-988.
|
|
ZHAO X, LI C, FU R, et al. Real-time detection of distracted driving behavior based on deep convolution-tokens dimension reduction and optimization of visual transformer[J]. Automotive Engineering, 2023, 45(6): 974-988.
|
| [18] |
MEHTA S, RASTEGARI M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer[J]. arXiv preprint arXiv:, 2021.
|
| [19] |
MOHAMMED Q, GENG X, WANG J, et al. Driver distraction detection using semi-supervised lightweight vision transformer[J].Engineering Applications of Artificial Intelligence, 2024, 129: 107618.
|
| [20] |
ABOUELNAGA Y, ERAQI H M, MOUSTAFA M N. Real-time distracted driver posture classification[J]. arXiv 2017. arXiv preprint arXiv:.
|
| [21] |
StateFarm distracted driver detection [DB/OL].https://www.kaggle.com/c/state-farm-distracted-driver-detection 2015.
|
| [22] |
LI P, YANG Y, GROSU R, et al. Driver distraction detection using octave-like convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 8823-8833.
|
| [23] |
刘英杰,杨风暴,胡鹏.基于Cascade R-CNN的并行特征金字塔网络无人机航拍图像目标检测算法[J].激光与光电子学进展,2020,57(20):302-309.
|
|
LIU Y J, YANG F B, HU P. Parallel feature pyramid network target detection algorithm for UAV aerial images based on Cascade R-CNN[J]. Laser & Optoelectronics Progress, 2020, 57(20): 302-309.
|
| [24] |
MEHTA S, RASTEGARI M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer[J]. arXiv 2021. arXiv preprint arXiv:.
|
| [25] |
HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 87-110.
|
| [26] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
| [27] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Con-
|