| [1] |
DRUYVESTEYN W F, GARAS J. Personal sound[J]. Journal of the Audio Engineering Society, 1997, 45 (9): 685-701.
|
| [2] |
TU Z, LU J, QIU X. Robustness of a compact endfire personal audio system against scattering effects[J]. Journal of the Acoustical Society of America, 2016, 140 (4): 2720-2724.
|
| [3] |
JEON S, CHOI J. Personal audio system for neckband headset with low computational complexity[J]. Journal of the Acoustical Society of America, 2020, 148 (6): 3913-3927.
|
| [4] |
CHANG J H, LEE C H, PARK J Y, et al. A realization of sound focused personal audio system using acoustic contrast control[J]. Journal of the Acoustical Society of America, 2009, 125 (4): 2091-2097.
|
| [5] |
SO H, CHOI J. Subband optimization and filtering technique for practical personal audio systems[C]. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019: 8494-8498.
|
| [6] |
LIAO X, CHEER J, ELLIOTT S, et al. Design of a loudspeaker array for personal audio in a car cabin[J]. Journal of the Audio Engineering Society, 2017, 65(3): 226-238.
|
| [7] |
VINDROLA L, MELON M, CHAMARD J C, et al. Use of the filtered-x least-mean-squares algorithm to adapt personal sound zones in a car cabin[J]. Journal of the Acoustical Society of America, 2021, 150(3): 1779-1793.
|
| [8] |
GÁLVEZ M F S, ELLIOTT S J, CHEER J. Personal audio loudspeaker array as a complementary TV sound system for the hard of hearing[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(9): 1824-1831.
|
| [9] |
HEUCHEL F M, CAVIEDES-NOZAL D, BRUNSKOG J, et al. Large-scale outdoor sound field control[J]. Journal of the Acoustical Society of America, 2020, 148(4): 2392-2402.
|
| [10] |
HEUCHEL F, CAVIEDES NOZAL D, AGERKVIST F T. Sound field control for reduction of noise from outdoor concerts[C]. Audio Engineering Society Convention 145. Audio Engineering Society, 2018.
|
| [11] |
CHOI J W, KIM Y H. Generation of an acoustically bright zone with an illuminated region using multiple sources[J]. Journal of the Acoustical Society of America, 2002, 111(4): 1695-1700.
|
| [12] |
SHIN M, LEE S Q, FAZI F M, et al. Maximization of acoustic energy difference between two spaces[J]. Journal of the Acoustical Society of America, 2010, 128(1): 121-131.
|
| [13] |
ELLIOTT S J, CHEER J, CHOI J W, et al. Robustness and regularization of personal audio systems[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(7): 2123-2133.
|
| [14] |
COLEMAN P, JACKSON P J B, OLIK M, et al. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array[J]. Journal of the Acoustical Society of America, 2014, 135(4): 1929-1940.
|
| [15] |
POLETTI M. An investigation of 2-D multizone surround sound systems[C]. Audio Engineering Society Convention 125. Audio Engineering Society, 2008.
|
| [16] |
OLIVIERI F, FAZI F M, FONTANA S, et al. Generation of private sound with a circular loudspeaker array and the weighted pressure matching method[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(8): 1579-1591.
|
| [17] |
RADMANESH N, BURNETT I S. Generation of isolated wideband sound fields using a combined two-stage lasso-ls algorithm[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 21(2): 378-387.
|
| [18] |
MOLÉS-CASES V, ELLIOTT S J, CHEER J, et al. Weighted pressure matching with windowed targets for personal sound zones[J]. Journal of the Acoustical Society of America, 2022, 151(1): 334-345.
|
| [19] |
CHANG J H, JACOBSEN F. Sound field control with a circular double-layer array of loudspeakers[J]. Journal of the Acoustical Society of America, 2012, 131(6): 4518-4525.
|
| [20] |
YANAGIDATE N, ELLIOTT S, TOI T. Car cabin personal audio: acoustic contrast with limited sound differences[C]. Audio Engineering Society, 2014.
|
| [21] |
LEE T, NIELSEN J K, JENSEN J R, et al. A unified approach to generating sound zones using variable span linear filters[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 491-495.
|
| [22] |
SHI L, LEE T, ZHANG L, et al. A fast reduced-rank sound zone control algorithm using the conjugate gradient method[C]. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 436-440.
|
| [23] |
CAI Y, WU M, LIU L, et al. Time-domain acoustic contrast control design with response differential constraint in personal audio systems[J]. Journal of the Acoustical Society of America, 2014, 135(6): 252-257.
|
| [24] |
GÁLVEZ M F S, ELLIOTT S J, CHEER J. Time domain optimization of filters used in a loudspeaker array for personal audio[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(11): 1869-1878.
|
| [25] |
FAZI F M. Sound field reproduction[D]. University of Southampton, 2010.
|
| [26] |
SIMÓN-GÁLVEZ M F, ELLIOTT S J, CHEER J. The effect of reverberation on personal audio devices[J]. Journal of the Acoustical Society of America, 2014, 135(5): 2654-2663.
|
| [27] |
ZHU Q, COLEMAN P, QIU X, et al. Robust personal audio geometry optimization in the SVD-based modal domain[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(3): 610-620.
|
| [28] |
OLSEN M, MØLLER M B. Sound zones: on the effect of ambient temperature variations in feed-forward systems[C]. Audio Engineering Society Convention 142. Audio Engineering Society, 2017.
|
| [29] |
AKETO T, SARUWATARI H, NAKAMURA S. Robust sound field reproduction against listener's movement utilizing image sensor[J]. Journal of Signal Processing, 2014, 18(4): 213-216.
|
| [30] |
TZIKAS D G, LIKAS A C, GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146.
|
| [31] |
BETLEHEM T, WITHERS C. Sound field reproduction with energy constraint on loudspeaker weights[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(8): 2388-2392.
|
| [32] |
ZHU Q, COLEMAN P, WU M, et al. Robust acoustic contrast control with reduced in-situ measurement by acoustic modeling[J]. Journal of the Audio Engineering Society, 2017, 65 (6): 460-473.
|
| [33] |
涂臻,卢晶. 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382.
|
|
TU Z,LU J. Investigation on the robustness of acoustic focusing algorithm using smallscale loudspeaker array under scattering condition[J]. Journal of Nanjing University(Natural Sciences), 2016, 52(2): 382.
|
| [34] |
章康宁, 卢晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180-190.
|
|
ZHANG K, LU J. Research on robustness of directional small-size linear loudspeaker array[J]. Journal of Nanjing University(Natural Sciences), 2019, 55(2): 180-190.
|
| [35] |
张姮李子. 小尺度扬声器阵列算法研究[D]. 南京: 南京大学, 2013.
|
|
ZHANG H. Research on algorithms for small-scale loudspeaker arrays[D]. Nanjing: Nanjing University, 2013.
|
| [36] |
ZHANG J, SHI L, CHRISTENSEN M G, et al. CGMM-based sound zone generation using robust pressure matching with ATF perturbation constraints[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 3331-3345.
|
| [37] |
GHOJOGH B, KARRAY F, CROWLEY M. Eigenvalue and generalized eigenvalue problems: tutorial[J]. arXiv preprint arXiv:, 2019.
|
| [38] |
戴华. 矩阵论[M]. 北京: 科学出版社, 2001.
|
|
DAI Hua. Matrix theory[M]. Beijing: Science Press, 2001.
|
| [39] |
BISHOP C M, NASRABADI N M. Pattern recognition and machine learning[M]. New York: Springer, 2006.
|
| [40] |
盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 5版. 北京: 高等教育出版社, 2020.
|
|
SHENG Z, XIE S, PAN C. Probability theory and mathematical statistics [M]. 5 th ed. Beijing: Higher Education Press, 2020.
|
| [41] |
廖祥凝. 车内分区域控制及加速声品质研究[D]. 北京: 清华大学, 2017.
|
|
LIAO X. Personal sound control in a car cabin and research on accelerating sound quality[D]. Beijing: Tsinghua University, 2017.
|
| [42] |
NELSON P A, CURTIS A R D, ELLIOTT S J, et al. The minimum power output of free field point sources and the active control of sound[J]. Journal of Sound and Vibration, 1987, 116(3): 397-414.
|