汽车工程 ›› 2025, Vol. 47 ›› Issue (10): 2004-2015.doi: 10.19562/j.chinasae.qcgc.2025.10.016

• • 上一篇    

基于误差概率模型的汽车座舱声场分区鲁棒性控制方法

唐泽曦1,廖祥凝1,白富生1(),罗浩1,李捷2   

  1. 1.重庆国家应用数学中心,重庆 401331
    2.智能汽车安全技术全国重点实验室,重庆长安汽车股份有限公司,重庆 400023
  • 收稿日期:2025-02-28 修回日期:2025-04-16 出版日期:2025-10-25 发布日期:2025-10-20
  • 通讯作者: 白富生 E-mail:fsbai@cqnu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFA1011802);重庆市自然科学基金(CSTB2022NSCO-LZX0012)

A Robust Sound Field Zoning Control Method Based on Error Probability Model for a Car Cabin

Zexi Tang1,Xiangning Liao1,Fusheng Bai1(),Hao Luo1,Jie Li2   

  1. 1.National Center for Applied Mathematics in Chongqing,Chongqing 401331
    2.State Key Laboratory of Intelligent Vehicle Safety Technology of China,Chongqing Changan Automobile Company Limited,Chongqing 400023;aJoint First Author
  • Received:2025-02-28 Revised:2025-04-16 Online:2025-10-25 Published:2025-10-20
  • Contact: Fusheng Bai E-mail:fsbai@cqnu.edu.cn

摘要:

汽车座舱的个人声区 (PSZ) 技术是一种利用扬声器阵列在座舱内创建独立声区的空间声场再现技术。在设计扬声器控制信号时,须准确地获取控制区域内扬声器与控制点之间的声传递函数 (ATFs)。然而在实际应用中,存在诸多干扰,导致无法获取理想的 ATFs,造成声场重建性能下降。处理此问题的传统鲁棒性控制方法通常在优化问题中添加正则项,但该方法面临正则化参数难以选取的问题。针对该问题,本文提出一种基于传递函数误差概率模型的鲁棒 ACC-LD 方法。该方法通过混合高斯模型(GMM)拟合 ATFs 的误差,利用期望最大化算法训练模型得到分布参数,采用将误差代入ACC-LD优化问题并以求期望的方式进行求解,从而避免正则化方法中的调参问题。在汽车座舱仿真环境下进行的对比实验表明,本文提出的方法在明暗区对比度和声场一致性方面均优于传统的正则化鲁棒性控制方法。

关键词: 汽车座舱声场分区, 鲁棒性控制, 误差概率模型

Abstract:

The Personal Sound Zone (PSZ) technology in automotive cabins is a spatial sound field reproduction technique that uses an array of speakers to create independent sound zones within the cabin. When designing the speaker control signals, it is essential to accurately obtain the acoustic transfer functions (ATFs) between the speakers and the control points within the targeted area. However, in practice, various interferences prevent the ideal ATFs from being obtained, resulting in degraded sound field reconstruction performance. Traditional robust control methods typically add regularization terms to the optimization problem, but these methods face challenges in selecting appropriate regularization parameters. To address the problem, a robust ACC-LD method based on a probabilistic model of transfer function errors is proposed in this paper. This approach fits the errors of the ATFs using the Gaussian mixture model, and the Expectation-Maximization (EM) algorithm is employed to train the model and obtain the distribution parameters. The errors are then incorporated into the ACC-LD optimization problem and solved by taking the expectation, thereby avoiding the parameter tuning issues inherent in regularization methods. A comparative study in the simulated automotive cabin environment shows that the proposed method outperforms traditional regularized robust control methods in terms of contrast between light and dark area as well as the consistency in the bright zones.

Key words: sound field zoning within a car cabin, robust control, error probability model