| [1] |
冯晓志. 基于CarSim的汽车线控转向系统控制策略研究[D]. 淄博: 山东理工大学, 2019.
|
|
FENG X Z. Research on control strategy of automotive wire controlled steering system based on CarSim[D]. Zibo: Shandong University of Technology, 2019.
|
| [2] |
陈特. 基于状态估计的分布式驱动无人车多目标协调与转向系统容错控制研究[D]. 镇江: 江苏大学,2021.
|
|
CHEN T. Research on multi objective coordination and fault tolerant control of distributed driven autonomous vehicle steering system based on state estimation[D]. Zhenjiang: Jiangsu University, 2021.
|
| [3] |
田承伟. 线控转向汽车容错控制方法研究[D]. 长春: 吉林大学, 2010.
|
|
TIAN C W. Research on fault-tolerant control method for wire controlled steering vehicles[D]. Changchun: Jilin University, 2010.
|
| [4] |
屈翔, 陈豪, 张君. 车辆线控转向系统关键技术研究综述[J]. 重庆理工大学学报(自然科学), 2023, 37(8): 74-84.
|
|
QU X, CHEN H, ZHANG J. A review of key technologies for vehicle steer by wire systems[J]. Journal of Chongqing University of Technology (Natural Sciences), 2023, 37(8): 74-84.
|
| [5] |
IRMER M, DEGEN R, NüßGEN A, et al. Development and analysis of a detail model for steer-by-wire systems[J]. IEEE Access, 2023, 11: 7229-7236.
|
| [6] |
ZHANG L, WANG Z, DING X, et al. Fault-tolerant control for intelligent electrified vehicles against front wheel steering angle sensor faults during trajectory tracking[J]. IEEE Access, 2021, 9: 65174-65186.
|
| [7] |
HUANG C, NAGHDY F, DU H. Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5): 1810-1817.
|
| [8] |
陈特, 徐兴, 蔡英凤, 等. 基于状态估计的无人车前轮转角与横摆稳定协调控制[J]. 北京理工大学学报, 2021, 41(10): 1050-1057.
|
|
CHEN T, XU X, CAI Y F, et al. Coordinated control of front wheel steering angle and lateral stability of unmanned vehicles based on state estimation[J]. Journal of Beijing Institute of Technology, 2021, 41(10): 1050-1057.
|
| [9] |
祁登亮, 冯静安, 倪向东, 等. 最大相关熵准则下改进扩展卡尔曼滤波的车辆状态估计[J]. 机械科学与技术, 2024, 43(4): 573-581.
|
|
QI D L, FENG J A, NI X D, et al. Improved extended Kalman filter for vehicle state estimation under maximum relevant entropy criterion[J]. Mechanical Science and Technology, 2024, 43(4): 573-581.
|
| [10] |
李胜琴,邢佳祁.基于模型预测和转角补偿的智能汽车换道轨迹跟踪控制算法[J].江苏大学学报(自然科学版),2024,45(3):249-256.
|
|
LI S Q, XING J Q. Trajectory tracking control algorithm of lane changing for intelligent vehicle based on model prediction and angle compensation[J]. Journal of Jiangsu University (Natural Science Edition),2024,45(3):249-256.
|
| [11] |
田韶鹏,蔡显雄,杨灿.分布式电驱动汽车横摆稳定性控制[J].江苏大学学报(自然科学版),2024,45(5):521-527, 573.
|
|
TIAN S P, CAI X X, YANG C. Yaw stability control of distributed electric vehicle[J]. Journal of Jiangsu University (Natural Science Edition),2024,45(5):521-527, 573.
|
| [12] |
袁朝春,夏林,陈龙,等.人机共驾智能汽车紧急工况下的驾驶员应激反应[J].江苏大学学报(自然科学版),2023,44(5):497-504.
|
|
YUAN Z C, XIA L, CHEN L, et al. Driver stress response of human-vehicle co-driving intelligent vehicle under emergency conditions[J]. Journal of Jiangsu University (Natural Science Edition), 2023,44(5):497-504.
|
| [13] |
孙晓强, 胡伟伟, 吴鹏程, 等. 轮胎非线性纵滑力学特性的分段仿射辨识建模方法[J]. 西安交通大学学报, 2021, 55(7): 52-60.
|
|
SUN X Q, HU W W, WU P C, et al. Segmented affine identification modeling method for nonlinear longitudinal sliding mechanical characteristics of tires[J]. Journal of Xi'an Jiaotong University, 2021, 55(7): 52-60.
|
| [14] |
孙晓强, 王玉麟, 胡伟伟, 等. 基于轮胎分段仿射辨识模型的车辆行驶状态估计策略研究[J]. 汽车工程, 2023, 45(7): 1212-1221.
|
|
SUN X Q, WANG Y L, HU W W, et al. Research on vehicle driving state estimation strategy based on tire segmented affine identification model[J]. Automotive Engineering, 2023, 45(7): 1212-1221.
|
| [15] |
MAO X, HE J, WANG G, et al. A model fusion distributed Kalman filter for non-Gaussian measurement noise [J]. IEEE Internet of Things Journal, 2025: 1-10.
|
| [16] |
GUNDUZ A, PRINCIPE J C. Correntropy as a novel measure for nonlinearity tests [J]. Signal Processing, 2009, 89(1): 14-23.
|
| [17] |
ZHAO S, CHEN B, PRíNCIPE J C. Kernel adaptive filtering with maximum correntropy criterion[C]. Proceedings of the The 2011 International Joint Conference on Neural Networks, 2011, F 31 July-5 Aug.
|
| [18] |
XU B, WANG X, ZHANG J, et al. Maximum correntropy delay Kalman filter for SINS/USBL integrated navigation [J]. ISA Transactions, 2021, 117: 274-287.
|
| [19] |
CHEN B, LIU X, ZHAO H, et al. Maximum correntropy Kalman filter [J]. Automatica, 2017, 76: 70-77.
|
| [20] |
MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
|
| [21] |
ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis [J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
|
| [22] |
CALINSKI T, HARABASZ, et al. A dendrite method for cluster analysis [J]. Communications in Statistics, 1974, 3(1):1-27.
|
| [23] |
田垅, 刘宗田. 最小二乘法分段直线拟合[J]. 计算机科学, 2012, 39(S1): 482-484.
|
|
TIAN L, LIU Z T. Least squares method for segmented line fitting[J]. Computer Science, 2012, 39(S1): 482-484.
|
| [24] |
LV S, ZHAO H, ZHOU L. Maximum mixture total correntropy adaptive filtering against impulsive noises [J]. Signal Processing, 2021, 189: 108236.
|
| [25] |
DAK A, RADHAKRISHNAN R. Non-iterative cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems [J]. Control Theory and Technology, 2022, 20(4): 465-474.
|