汽车工程 ›› 2020, Vol. 42 ›› Issue (8): 1124-1130.doi: 10.19562/j.chinasae.qcgc.2020.08.018

• • 上一篇    下一篇

CFRP-钢超混杂结构共固化成型分析与优化*

敬敏1, 龚友坤2, 王智文1, 刘永杰1, 栗娜1, 宋增瑞2, 宁慧铭2, 胡宁2   

  1. 1.北京汽车研究总院,北京 101300;
    2.重庆大学航空航天学院,重庆 400044
  • 收稿日期:2019-09-19 出版日期:2020-08-25 发布日期:2020-09-24
  • 通讯作者: 宁慧铭,副教授,博士,E-mail:ninghuiming@cqu.edu.cn。
  • 基金资助:
    *国家自然科学基金汽车联合重点基金(U1864208)和国家自然科学基金(51603022)资助。

Analysis and Optimization on Co-curing Molding of CFRP-steel Composite with Super-hybrid Structures

Jing Min1, Gong Youkun2, Wang Zhiwen1, Liu Yongjie1, Li Na1, Song Zengrui2, Ning Huiming2, Hu Ning2   

  1. 1. Beijing Automotive Technology Center Co., Ltd., Beijing 101300;
    2. College of Aerospace Engineering, Chongqing University, Chongqing 400044
  • Received:2019-09-19 Online:2020-08-25 Published:2020-09-24

摘要: 采用碳纤维增强聚合物(CFRP)-钢超混杂复合结构对某电动汽车B柱进行轻量化设计。由于不同材料性质的差异,导致成型过程中不可避免地会出现残余应力和固化变形,影响零部件的力学性能和尺寸精度。为此,本文中通过有限元法分析了CFRP-钢超混杂复合U型结构热模压共固化成型过程,其中复合材料固化过程采用CHILE预测模型。在保证成型效率的前提下,对固化工艺参数进行了优化。结果表明,通过工艺参数的优化可有效地减小CFRP-钢超混杂共固化成型U型结构的残余应力和固化变形。

关键词: 汽车车身, 超混杂复合材料, 有限元法, 固化变形

Abstract: The lightweight design of the B-pillar in an electric vehicle with carbon fiber reinforced polymer (CFRP)-steel super-hybrid structure is carried out. The discrepancy in properties of different material inevitably leads to the occurrence of residual stress and solidification deformation in molding process, affecting the mechanical performance and dimensional accuracy of the components. Accordingly, the process of hot-press molding with co-curing of a U-shaped super-hybrid structure of CFRP-steel composite is analyzed by finite element method, in which the CHILE prediction model is adopted for composite curing process. On the premise of ensuring the molding efficiency, an optimization on curing process parameters is conducted. The results show that with optimized curing process parameters,the residual stress and curing deformation of the co-curing molded U-shaped super-hybrid structure of CFRP-steel composite can be effectively reduced.

Key words: vehicle body, super-hybrid composite, FEM, curing deformation