[1] SAKAI E H. Measurement and visualization of the contact pressure distribution of rubber disks and tires[J]. Tire Science and Technology, 1995, 23(4):238-255. [2] 俞淇, 戴元坎,张凯. 静负荷下轮胎接地压力分布测试的研究[J]. 轮胎工业, 1999(4):11-15. YU Qi, DAI Yuankan , ZHANG Kai. Study on determination of tire contact-area pressure distribution under static load[J]. Tire Industry, 1999(4):11-15. [3] 王国林, 付晶, 梁晨. 子午线轮胎静态及滚动状态下接地特性试验研究[J]. 橡胶工业, 2016(7):425-428. WANG Guolin, FU Jing, LIANG Chen. Experimental study on contact characteristics of radial tire in static and rolling state[J]. China Rubber Industry, 2016(7):425-428. [4] 高明, 侯波, 于飞. 轮胎印痕控制参数的研究[J]. 轮胎工业, 2013, 33(3):146-150. GAO Ming, HOU Bo, YU Fei, et al. Study on control parameters of tire footprints[J]. Tire Industry, 2013,33(3):146-150. [5] 王国林, 殷旻, 梁晨. 图像处理技术在轮胎接地几何特征测量中的应用[J]. 江苏大学学报(自然科学版), 2017, 38(2) : 139-143. WANG Guolin,YIN Min,LIANG Chen. Measurement system of tire footprint geometric parameters based on image processing[J]. Journal of Jiangsu University (Natural Science Edition), 2017,38(2):139-143. [6] KOEHNE S H, MATUTE B, MUNDI R. Evaluation of tire tread and body interactions in the contact patch[J]. Tire Science and Technology, 2003, 31(3):159-172. [7] TOMARAEE P, MARDANI A, MOHEBBI A, et al. Relationships among the contact patch length and width, the tire deflection and the rolling resistance of a free-running wheel in a soil bin facility[J]. Spanish Journal of Agricultural Research, 2015, 13(2):0211. [8] JUAN C A. Optimization of an optical test Bench for tire properties measurement and tread defects characterization[J]. Sensors, 2017, 17(4):707-713. [9] RADULESCU R C. Sacrificial ribs for improved tire wear[J]. 2002. DOI:EP1007377 A1. [10] MATHEWS. Tire contact patch characterization through finite element modeling and experimental testing[D]. Virginia Tech University, 2016. [11] 梁晨. 子午线轮胎综合接地性能评价体系与方法研究[D]. 镇江:江苏大学, 2013. LIANG Chen. Research on radial tire comprehensive ground performance evaluation system and method[D].Zhenjiang:Jiangsu University,2013. [12] 王国林, 乔磊, 周海超, 等. PCR轮胎接地性态对噪声与滚动阻力影响研究[J]. 机械工程学报, 2019,55(16) :123-131. WANG Guolin, QIAO Lei ,ZHOU Haichao ,et al. Influence of PCR tire grounding characteristics to noise and rolling resistance[J]. Journal of Mechanical Engineering, 2019,55(16):123-131. [13] 傅相诚, 张伟伟, 车明明, 等. 基于Abaqus的轮胎接地印痕优化分析[J]. 轮胎工业, 2019, 39(6):330-333. FU Xiangcheng,ZHANG Weiwei,CHE Mingming,et al. Analysis and optimization of tire footprint based on abaqus[J]. Tire Industry,2019,39(6):330-333. [14] CHO J R, LEE H W, JEONG W B, et al. Numerical estimation of rolling resistance and temperature distribution of 3D periodic patterned tire[J]. International Journal of Solids and Structures, 2013, 50(1):86-96. [15] XIONG Y, TUONONEN A. Rolling deformation of truck tires:measurement and analysis using a tire sensing approach[J]. Journal of Terramechanics, 2015, 6:33-42. [16] LORENZ B, PERSSON B, FORTUNATO G, et al. Rubber friction for tire tread compound on road surfaces[J]. Journal of Physics:Condensed Matter, 2013, 25(9):095007. [17] 张子仪. 2016中国轮胎德国测试[J/OL]. https://www.auto-home.com.cn/drive/201608/891160-2.html. ZHANG Ziyi. In 2016, Chinese tires were tested in Germany[J/OL]. https://www.autohome.com.cn/drive/201608/891160-2.html. [18] YAN T H, SU Y, ZHANG Q C. Precise 3D shape measurement of three-dimensional digital image correlation for complex surfaces[J]. Science China Technological Sciences, 2018,61:68-73. [19] ERGON R. Principal component regression (PCR) and partial least squares regression (PLSR)[M]. Mathematical and Statistical Methods in Food Science and Technology. John Wiley & Sons, Ltd, 2013. [20] 王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法[M]. 北京:国防工业出版社, 2006. WANG Huiwen, WU Zaibin, MENG Jie. Partial least-squares regression-linear and nonlinear methods[M]. Beijing:National Defense Industry Press, 2006. |