Automotive Engineering ›› 2021, Vol. 43 ›› Issue (2): 296-304.doi: 10.19562/j.chinasae.qcgc.2021.02.019
Bin Qiu1,2,Rujie Yu3,Yong Liu3,4,Dongchang Zhao3(),Jian Song1
Received:
2020-06-17
Revised:
2020-08-21
Online:
2021-02-25
Published:
2021-03-04
Contact:
Dongchang Zhao
E-mail:zhaodongchang@catarc.ac.cn
Bin Qiu,Rujie Yu,Yong Liu,Dongchang Zhao,Jian Song. A Comparative Study on Economy of Battery and Fuel Cell Electric Vehicles of Different Application Scenarios Based on Learning Rate[J].Automotive Engineering, 2021, 43(2): 296-304.
"
研究者 | 燃料电池系统 | 储氢瓶 | 电池包 | 电机电控 | FCEV | BEV |
---|---|---|---|---|---|---|
Mattsson & Wene (1997)[ | 0.13 | |||||
Sano 等 (2005)[ | 0.2 | 0.1 | 0.1 | |||
Matteson & Williams (2015)[ | 0.19~0.23(铅酸) 0.22(锂离子) | |||||
Wei等(2017)[ | 0.18(Micro?CHP) 0.15(PAFC) 0.042(MCFC) 0.01(SOFC) | |||||
Seebregts等(1998)[ | 0.18 | |||||
Feber等(2003)[ | 0.18 | |||||
Schlecht (2003)[ | 0.2/0.3/0.4 | |||||
Wurster等(2007)[ | 0.18→008 0.2→0.1 | 0.15 | 0.1 | |||
Krzyzanowski (2008)[ | 0.05-0.2 | 0.15 | ||||
Schwoon (2008)[ | 0.15 | |||||
Gül等(2009)[ | 0.15 | |||||
Kloess & Haas (2009)[ | 0.075 | |||||
Weiss等(2012)[ | 0.23 | |||||
McDowall & Dodds (2012)[ | 0.15~0.22 | 0.1~0.15 | ||||
Anandarajah等(2013)[ | 0.18 | 0.07 | 0.1 | |||
Nykvist & Nilsson (2015)[ | 0.08/0.14 | |||||
Ajanovic & Haas (2018)[ | 0.2 | |||||
Safari (2018)[ | 0.15 | 0.09 | ||||
Nykvist等(2019)[ | 0.11/0.16 | |||||
Hsieh等(2019)[ | 0.165 |
1 | IEA(International Energy Agency). CO2 emissions from fuel combustion 2018 highlights[R]. Paris: International Energy Agency, 2018. |
2 | ALLIANCE ZEV. International ZEV alliance announcement[EB/OL]. (2015-12-03)[2020-12-2]. . |
3 | RUFFINI E, WEI M. Future costs of fuel cell electric vehicles in California using a learning rate approach[J]. Energy, 2018,150: 329-341. |
4 | CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018,3(4): 279-289. |
5 | THOMPSON S T, JAMES B D, HUYA-KOUADIO J M, et al. Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook[J]. Journal of Power Sources, 2018,399(30):304-313. |
6 | JAMES B D, HUYA-KOUADIO J, HOUCHINS C, et al. Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2017 update[R].Strategic Analysis Inc., 2017. |
7 | 节能与新能源汽车技术路线指导委员会. 节能与新能源汽车技术路线图[M]. 北京: 机械工业出版社, 2016: 436. |
Steering Committee on Technology Route of Energy Saving and New Energy Vehicles. Technology roadmap for energy saving and new energy vehicles[M]. Beijing: China Machine Press, 2016: 436. | |
8 | 赵学良. 氢燃料电池电动车对石化企业的战略意义[J]. 当代石油石化, 2019,27(1): 15-19. |
ZHAO X. Strategic significance of hydrogen FCEV to petrochemical enterprises[J]. Petroleum & Petrochemical Today, 2019,27(1): 15-19. | |
9 | 刘坚, 钟财富. 我国氢能发展现状与前景展望[J]. 中国能源, 2019,41(2): 32-36. |
LIU J, ZHONG C. The hydrogen energy development status and prospects of China[J]. Energy of China, 2019,41(2): 32-36. | |
10 | WRIGHT T P. Factors affecting the cost of airplanes[J]. Journal of Aeronautical Sciences, 1936,3(4): 122-128. |
11 | YELLE L E. The learning curve: historical review and comprehensive survey[J]. Decision Sciences, 1979,10(2): 302-328. |
12 | MATTSSON N, WENE C O. Assessing new energy technologies using an energy system model with endogenized experience curves[J]. International Journal of Energy Research, 1997,21(4): 385-393. |
13 | SANO F, AKIMOTO K, HOMMA T, et al. Analysis of technological portfolios for CO₂ stabilizations and effects of technological changes[J]. Energy Journal, 2006,27(1): 141-161. |
14 | MATTESON S, WILLIAMS E. Residual learning rates in lead-acid batteries: effects on emerging technologies[J]. Energy Policy, 2015,85: 71-79. |
15 | MATTESON S, WILLIAMS E. Learning dependent subsidies for lithium-ion electric vehicle batteries[J]. Technological Forecasting & Social Change, 2015,92: 322-331. |
16 | WEI M, SMITH S J, SOHN M D. Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US[J]. Applied Energy, 2017,191: 346-357. |
17 | IEA. Global EV outlook 2018[R]. IEA, 2018. |
18 | IEA. Technology roadmap-hydrogen and fuel cells[R]. IEA, 2015. |
19 | SEEBREGTS A J, KRAM T, SCHAEFFER G J, et al. Endogenous technology learning: experiments with MARKAL[R].1998. |
20 | FEBER M A P C de, SCHAEFFER G J, SEEBREGTS A J, et al. Enhancements of endogenous technology learning in the western European MARKAL model contributions to the EU SAPIENT project[R].2003. |
21 | SCHLECHT L. Competition and alliances in fuel cell power train development[J]. International Journal of Hydrogen Energy, 2003,28(7): 717-723. |
22 | WURSTER R, WIETSCHEL M. The European hydrogen roadmap: Project report[R].2007. |
23 | KRZYZANOWSKI D A, KYPREOS S, BARRETO L. Supporting hydrogen based transportation: case studies with Global MARKAL Model[J]. Computational Management Science, 2008,5(3): 207-231. |
24 | SCHWOON M. Learning by doing, learning spillovers and the diffusion of fuel cell vehicles[J]. Simulation Modelling Practice & Theory, 2008,16(9): 1463-1476. |
25 | GÜL T, KYPREOS S, TURTON H, et al. An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)[J]. Energy, 2009,34(10): 1423-1437. |
26 | KLOESS M, HAAS R. Potentials of hybrid and electric vehicles for the passenger vehicle sector in Austria - a model based analysis[C]. 10th IAEE European Conference, Vienna, 2009. |
27 | WEISS M, PATEL M K, JUNGINGER M, et al. On the electrification of road transport - learning rates and price forecasts for hybrid-electric and battery-electric vehicles[J]. Energy Policy, 2012,48(3): 374-393. |
28 | MCDOWALL W, DODDS P. A review of low-carbon vehicle and hydrogen end-use data for energy system models[R].UK-SHEC, 2012. |
29 | ANANDARAJAH G, MCDOWALL W, EKINS P. Decarbonising road transport with hydrogen and electricity: long term global technology learning scenarios[J]. International Journal of Hydrogen Energy, 2013,38(8): 3419-3432. |
30 | NYKVIST B, NILSSON M. Rapidly falling costs of battery packs for electric vehicles[J]. Nature Climate Change, 2015(5): 329-332. |
31 | AJANOVIC A, HAAS R. Economic prospects and policy framework for hydrogen as fuel in the transport sector[J]. Energy Policy, 2018,123: 280-288. |
32 | SAFARI M. Battery electric vehicles: Looking behind to move forward[J]. Energy Policy, 2018,115: 54-65. |
33 | NYKVIST B, SPREI F, NILSSON M. Assessing the progress toward lower priced long range battery electric vehicles[J]. Energy Policy, 2019,124: 144-155. |
34 | HSIEH I L, PAN M S, CHIANG Y, et al. Learning only buys you so much: practical limits on battery price reduction[J]. Applied Energy, 2019,239: 218-224. |
35 | 方川, 徐梁飞, 李建秋, 等. 典型燃料电池轿车动力系统的关键技术[J]. 汽车安全与节能学报, 2016,7(2): 210-217. |
FANG C, XU L, LI J, et al. Key technologies of the powertrain of a typical fuel cell sedan[J]. Journal of Automotive Safety and Energy, 2016,7(2): 210-217. | |
36 | 郜昊强, 宋业建. 氢燃料电池汽车发展趋势分析[J]. 汽车零部件, 2018,12(126): 80-82. |
GAO H, SONG Y. Development trend analysis of hydrogen fuel cell vehicle [J]. Automobile Parts, 2018,12(126): 80-82. | |
37 | 北京交通发展研究院. 2018年北京交通发展年报[R]. 北京: 北京交通发展研究院, 2018. |
Beijing Transport Institute. Beijing transport annual report[R]. Beijing: Beijing Transport Institute, 2018. | |
38 | 沈巍, 张倩玉. 京津冀区域电动物流车配送现状及问题分析[J]. 物流工程与管理, 2018,40(10): 90-94. |
SHEN W, ZHANG Q. Analysis on the status quo and problems of electric logistics vehicle distribution in Beijing-Tianjin-Hebei region [J]. Logistics Engineering and Management, 2018,40(10): 90-94. | |
39 | ZHENG J, ZHOU Y, YU R, et al. Survival rate of China passenger vehicles: a data-driven approach[J]. Energy Policy, 2019,129: 587-597. |
40 | 商务部, 发改委, 公安部, 等. 商务部、发改委、公安部、环境保护部令2012年第12号《机动车强制报废标准规定》[EB/OL]. (2013-1-14)[2020-12-2]. . |
Ministry of Commerce of the People’s Republic of China, National Development and Reform Commission, Ministry of Public Security of the People’s Republic of China, et al. Ministry of Commerce, National Development and Reform Commission, Ministry of Public Security and Ministry of Environmental Protection Decree No.12, 2012, Standard provisions on compulsory scrapping of motor vehicles[EB/OL]. (2013-1-14)[2020-12-2]. . | |
41 | 中国汽车技术研究中心, 日产中国投资有限公司, 东风汽车有限公司. 中国新能源汽车产业发展报告(2017)[M]. 北京: 社会科学文献出版社, 2017. |
China Automotive Technology and Research Center Co., Ltd., Nissan (China) Investment Co., Ltd., Dongfeng Motor Co., Ltd.. Annual report on new energy vehicle industry in China (2017)[M]. Beijing: Social Sciences Academic Press (China), 2017. | |
42 | JAMES B D, HUYA-KOUADIO J, HOUCHINS C. Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2019 Update[R].Department of Energy, 2019. |
|