Automotive Engineering ›› 2022, Vol. 44 ›› Issue (8): 1117-1125.doi: 10.19562/j.chinasae.qcgc.2022.08.001
Special Issue: 智能网联汽车技术专题-规划&控制2022年
Chao Zhao1,Dexu Bu1,Lipeng Cao1,2,Keqiang Li1,Yugong Luo1()
Received:
2022-02-06
Revised:
2022-03-17
Online:
2022-08-25
Published:
2022-08-25
Contact:
Yugong Luo
E-mail:lyg@mail.tsinghua.edu.cn
Chao Zhao,Dexu Bu,Lipeng Cao,Keqiang Li,Yugong Luo. Safety Control Strategy for Adaptive Cruise Control System in Heavy Rainfall Scenes[J].Automotive Engineering, 2022, 44(8): 1117-1125.
1 | Road vehicles safety of the intended functionality: ISO 21448 [S].2019. |
2 | LURIE O, MILLER J. Hazard analysis and risk assessment beyond ISO 26262: management of complexity via parametrization[C]. SAE Paper 2018- 01-1067. |
3 | HOU Z, LIU H, ZHANG Y. Zero-day vulnerability inspired hazard assessment for autonomous driving vehicles[C]. 2019 IEEE 19th International Conference on Communication Technology (ICCT). IEEE, 2019. |
4 | ZHANG X, SHAO W, ZHOU M, et al. A scene comprehensive safety evaluation method based on binocular camera[J]. Robotics and Autonomous Systems, 2020, 128: 103503. |
5 | MARTIN H, WINKLER B, GRUBMÜLLER S, et al. Identification of performance limitations of sensing technologies for automated driving[C]. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2019. |
6 | 尚世亮, 童菲, 郭梦鸽, 等. 基于驾驶员信心度的SOTIF评价模型建立与试验[J]. 机械设计与研究, 2020, 36(2): 119-123. |
SHANG Shiliang, TONG Fei, GUO Mengge, et al. Evaluation model of SOTIF and experimental research combining driver confidence[J]. Machine Design & Research, 2020, 36(2): 119-123. | |
7 | GUO M, SHANG S, HAIFENG C, et al. Control model of automated driving systems based on SOTIF evaluation[C]. WCX SAE World Congress Experience, 2020. |
8 | 王辉. 环境对毫米波雷达性能的影响[J]. 火控雷达技术, 1981(4): 32-44,63. |
WANG Hui. Influence of environment on performance of millimeter wave radar[J]. Fire Control Radar Technology, 1981(4): 32-44,63. | |
9 | 黄际英, 李汉兵, 阎毅. 降雨对毫米波雷达性能的影响[C]. 1993年全国微波会议论文集(下册). 1993. |
HUANG Jiying, LI Hanbing, YAN Yi. Influence of rain on performance of millimeter wave radar[C]. Proceedings of 1993 National Microwave Conference (Volume 2). 1993. | |
10 | HUANG J, JIANG S, LU X. Rain backscattering properties and effects on the radar performance at MM wave band[J]. International Journal of Infrared and Millimeter Waves, 2001, 22(6): 917-922. |
11 | GOUROVA R, KRASNOV O, YAROVOY A. Analysis of rain clutter detections in commercial 77 GHz automotive radar[C]. 2017 European Radar Conference (EURAD). IEEE, 2017. |
12 | 白继玲, 杨瑞科. 毫米波雷达探测性能受降雨后向散射增强影响分析[J]. 科技资讯, 2013(20): 2. |
BAI Jiling, YANG Ruike. Analysis of the influence of rain backscattering enhancement on MMW radar detection performance[J]. Science & Technology Information, 2013(20): 2. | |
13 | YANG R, ZHANG X, LIU K, et al. Study of the influence of rain backscattering enhancement on MMW radar performance[C]. Cross Strait Quad-regional Radio Science & Wireless Technology Conference. IEEE, 2012. |
14 | YANG R K, LI L, MA H H. Effects of backscattering enhancement considering multiple scattering in rain on MMW radar performance[J]. Indian Journal of Radio and Space Physics, 2016, 42(6): 404-410. |
15 | 张蕊, 赵振维, 林乐科. 降雨对雷达探测性能的影响[J]. 现代雷达, 2007, 29(1): 4. |
ZHANG Rui, ZHAO Zhenwei, LIN Leke. Influence of rain on radar detection performance[J]. Modern Radar, 2007, 29(1): 4. | |
16 | ZANG S, DING M, SMITH D, et al. The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car[J]. IEEE Vehicular Technology Magazine, 2019, PP(2): 1-1. |
17 | 李鑫. 面向汽车智能驾驶的毫米波雷达建模与仿真研究[D]. 长春:吉林大学, 2020. |
LI Xin. Research on modeling and simulation of millimeter wave radar for vehicle intelligent driving[D]. Changchun:Jilin university, 2020. | |
18 | GUO J, DENG W, ZHANG S, et al. A novel method of radar modeling for vehicle intelligence[J]. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 2016, 10(1): 2016-01-1892-. |
19 | 詹军, 董学才, 洪峰, 等. 智能汽车传感器实时功能模型及验证[J]. 汽车工程, 2019, 41(7): 731-737. |
ZHAN Jun, DONG Xuecai, HONG Feng, et al. Real-time functional model and verification of intelligent vehicle sensors[J]. Automotive Engineering, 2019, 41(7): 731-737. | |
20 | SCHUBERT R, MATTERN N, BOURS R. Simulation of sensor models for the evaluation of advanced driver assistance systems[J]. ATZelektronik Worldwide, 2014, 9(3): 26-29. |
21 | 蔡英凤, 吕志军, 孙晓强, 等. 基于并线行为识别的自适应巡航控制方法[J]. 汽车工程, 2021, 43(7): 1077-1087. |
CAI Y, LÜ Z, SUN X, et al. An adaptive cruise control scheme based on merging behavior recognition[J]. Automotive Engineering, 2021, 43(7): 1077-1087. | |
22 | DIS Bernsteiner, ZMM Sc, DID Lindvai-Soos, et al. Radar sensor model for the virtual development process[J]. ATZelektronik worldwide, 2015, 10(2): 46-52. |
23 | 郭景华, 李文昌, 王靖瑶, 等. 智能电动汽车自适应巡航与再生制动多目标协同控制[J]. 汽车工程, 2020, 42(12): 1638-1646. |
GUO Jinghua, LI Wenchang, WANG Jingyao, et al. Multi-objective integrated adaptive cruise and regenerative braking control of intelligent electric vehicles[J]. Automotive Engineering, 2020, 42(12): 1638-1646. | |
24 | HASIRLIOGLU S, RIENER A. A general approach for simulating rain effects on sensor data in real and virtual environments[J]. IEEE Transactions on Intelligent Vehicles, 2019, PP(99): 1-1. |
[1] | Siyu Wu,Wenhao Yu,Xingyu Xing,Yuxin Zhang,Chuzhao Li,Xueke Li,Xinyu Gu,Yunwei Li,Xiaohan Ma,Wei Lu,Zheng Wang,Zhenmao Hao,Hong Wang,Jun Li. Methodology of Critical Scenarios-Based Dual-Loop Testing and Verification for Safety of the Intended Functionality [J]. Automotive Engineering, 2023, 45(9): 1583-1607. |
[2] | Xinzheng Wu,Xingyu Xing,Lihao Liu,Yong Shen,Junyi Chen. Testing and Analysis of the Robustness of Decision-Making and Planning Systems Based on Fault Injection [J]. Automotive Engineering, 2023, 45(8): 1428-1437. |
[3] | Wenbo Shao,Jun Li,Yuxin Zhang,Hong Wang. Key Technologies to Ensure the Safety of the Intended Functionality for Intelligent Vehicles [J]. Automotive Engineering, 2022, 44(9): 1289-1304. |
[4] | Huang Jing, Wei Wei, Zou Debiao. Research on Multi-mode Switching Strategy of Adaptive Cruise Control System Based on Personalized Spacing Strategy [J]. Automotive Engineering, 2020, 42(10): 1302-1311. |