Automotive Engineering ›› 2023, Vol. 45 ›› Issue (2): 263-272.doi: 10.19562/j.chinasae.qcgc.2023.02.011
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Received:
2022-07-20
Revised:
2022-08-31
Online:
2023-02-25
Published:
2023-02-21
Contact:
Zhifei Wu
E-mail:wuzhifei@tyut.edu.cn
Zhifei Wu,Shoubiao Li. Lane Detection Algorithm Based on Instance Segmentation[J].Automotive Engineering, 2023, 45(2): 263-272.
1 | 吴一全, 刘莉. 基于视觉的车道线检测方法研究进展[J]. 仪器仪表学报, 2019, 40(12): 92-109. |
WU Y Q, LIU L. Research and development of the vision-based lane detection methods[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 92-109. | |
2 | LIANG D, GUO Y C, ZHANG S K, et al. Lane detection: a survey with new results[J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
3 | SUN T Y, TSAI S J, CHAN V. HSI color model based lane-marking detection[C]. 2006 IEEE Intelligent Transportation Systems Conference. IEEE, 2006: 1168-1172. |
4 | 陈涛, 张洪丹, 陈东,等. 基于优先像素与卡尔曼滤波追踪的车道线检测[J]. 汽车工程, 2016, 38(2): 200-205,220. |
CHEN T, ZHANG H D, CHEN D, et al. Lane detection based on high priority pixels and tracking by Kalman filter[J]. Automotive Engineering, 2016, 38(2): 200-205,220. | |
5 | 金智林, 何麟煊, 赵万忠. 用于智能汽车的复杂光照环境车道线检测及跟踪方法[J]. 汽车安全与节能学报, 2019, 10(4): 459-466. |
JIN Z L, HE L X, ZHAO W Z. Detection and tracking method of lane line for intelligent vehicles under complex illumination condition[J]. Journal of Automotive Safety and Energy, 2019, 10(4): 459-466. | |
6 | 吴骅跃, 赵祥模. 基于IPM和边缘图像过滤的多干扰车道线检测[J]. 中国公路学报, 2020, 33(5): 153-164. |
WU H Y, ZHAO X M. Multi-interference lane recognition based on IPM and edge image filtering[J]. China Journal of Highway and Transport, 2020, 33(5): 153-164. | |
7 | 张嘉明, 钱立军, 邱利宏, 等. 一种多线形车道线检测算法[J]. 合肥工业大学学报(自然科学版), 2020, 43(4): 536-542,570. |
ZHANG J M, QIAN L J, QIU L H, et al. A multiple lane detection algorithm[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(4): 536-542,570. | |
8 | 陈无畏, 蒋玉亭, 谈东奎. 一种基于边缘点投影的车道线快速识别算法[J]. 汽车工程, 2017, 39(3): 357-363. |
CHEN W W, JIANG Y T, TAN D K. A fast lane marking recognition algorithm based on edge projection[J]. Automotive Engineering, 2017, 39(3): 357-363. | |
9 | PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 7276-7283. |
10 | HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1013-1021. |
11 | NEVEN D, DE B B, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]. 2018 IEEE Intelligent Vehicles Symposium(IV). IEEE, 2018: 286-291. |
12 | QIN Z, WANG H, LI X. Ultra fast structure-aware deep lane detection[C]. Proceedings of European Conference on Computer Vision, 2020: 276-291. |
13 | YOO S, LEE H S, MYEONG H, et al. End-to-end lane marker detection via row-wise classification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 1006-1007. |
14 | TABELINI L, BERRIEL R, PAIXAO T M, et al. Polylanenet: lane estimation via deep polynomial regression[C]. Proceedings of the International Conference on Pattern Recognition. IEEE, 2021: 6150-6156. |
15 | LIU R, YUAN Z, LIU T, et al. End-to-end lane shape prediction with transformers[C]. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2021: 3694-3702. |
16 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
17 | DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255. |
18 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
19 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]. Proceedings of the 4th International Conference on Learning Representations. IEEE, 2016: 1-13. |
20 | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]. 2018 IEEE Winter Conference on Applications of Computer Vision. IEEE, 2018:1451-1460. |
21 | BÄCKLUND H, HEDBLOM A, NEIJMAN N. A density-based spatial clustering of application with noise[J]. Data Mining TNM033, 2011: 11-30. |
22 | MISHRA P, SARAWADEKAR K. Polynomial learning rate policy with warm restart for deep neural network[C]. IEEE Region Ten Conference. IEEE, 2019: 2087-2092. |
[1] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[2] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[3] | Lisheng Jin,Yang He,Huanhuan Wang,Zhen Huo,Xianyi Xie,Baicang Guo. Point Cloud Segmentation Algorithm Based on Adaptive Threshold DBSCAN for Roadside LiDAR [J]. Automotive Engineering, 2022, 44(7): 987-996. |
[4] | Zheyu Zhang,Lü Chao,Jinghang Li,Guangming Xiong,Shaobin Wu,Jianwei Gong. Pedestrian Trajectory Prediction and Risk Grade Assessment Based on Vehicle-Perspective Pedestrian Data [J]. Automotive Engineering, 2022, 44(5): 675-683. |
[5] | Lei Ma,Zebin Liu,Biao Cao,Wenju Wang,Quanyuan Qiu. Roughness Measure-Based Road Drivable Region Identification [J]. Automotive Engineering, 2021, 43(11): 1594-1601. |
[6] | Zhiguo Zhao,Peng Wang,Xiaorong Chen,Kaichong Liang. Obstacle Tracking of a Lidar-equipped Vehicle in Turning for Collision Avoidance [J]. Automotive Engineering, 2021, 43(11): 1611-1619. |
[7] | Wen Sun,Juncai Rong,Junnian Wang,Jia Xu,Lü Siwen,Lili Liu. Research on the Construction Method of Urban Compound Driving Cycle with Curved Road Information [J]. Automotive Engineering, 2021, 43(10): 1519-1527. |
[8] | Guo Jinghua, Li Keqiang, Wang Jin, Chen Tao, Li Wenchang, Wang Ban. Study on Prediction of Preceding Vehicle's Stochastic Motion Based on Risk Scenarios Clustering Analysis [J]. Automotive Engineering, 2020, 42(7): 847-853. |
[9] | Gu Xianguang, Meng Kewei, Yao Xinxin, Wang Hongbo. Judging Method for Lateral Stability of Intelligent Vehicle Based on Combined Clustering [J]. Automotive Engineering, 2020, 42(11): 1497-1505. |
[10] | Zhao Zhiguo, Feng Jianxiang, Zhou Liangjie, Wang Kai, Hu Haorui, Zhang Haishan, Ning Zhonglin. K-means++ Clustering and Recognition of Driver'sCollision Avoidance Steering Behavior [J]. Automotive Engineering, 2020, 42(1): 52-58. |
[11] | Zhu Wangwang, Huang Hongcheng ,Ma Jinxing. A Research on Parking Space Detection Algorithm Based on Image Recognition [J]. Automotive Engineering, 2019, 41(7): 744-749. |
[12] | Zhu Bing, Li Weinan, Wang Zhen, Zhao Jian, He Rui, Han Jiayi. Identification Strategy of Driving Style Based on Random Forest [J]. , 2019, 41(2): 213-218. |
[13] | Fan Jingjing, Wang Li, Chu Wenbo, Luo Yugong. Research on Pedestrian Recognition in Cross-country Environment Based on KDTree and Euclidean Clustering [J]. Automotive Engineering, 2019, 41(12): 1410-1415. |
[14] | Wang Bo, Tang Xianzhi, Wang Liandong, Yang Shujun & Ma Lei. Braking Intention Identification Method for Electric Vehicles Based on EEMD and Entropy Theory [J]. , 2018, 40(8): 935-941. |
[15] | Ma Lei, Chen Ke, Wang Minglu, Qu Rui. A Study on Driver Behavior Identification Method Under Environment of Vehicle-Road Integration [J]. , 2018, 40(11): 1330-1338. |