1 |
吴春鹏, 冯姣. 结合AMS的C-LSTM船舶轨迹预测[J].船海工程,2021,50(6):141-146,152.
|
|
WU C P, FENG J. The track prediction method based on ARIMA-BIGRU neural network [J]. Ship & Ocean Engineering, 2021,50(6):141-146,152.
|
2 |
施念邡, 杨星斗, 戴特奇. 北京市出租车运量分布的时空格局及生成机制[J].地理研究,2021,40(6):1667-1683.
|
|
SHI N F, YANG X D, DAI T Q. The spatiotemporal pattern of taxi ridership and its generation mechanism in Beijing [J]. Geographical Research,2021,40(6):1667-1683.
|
3 |
邸少宁,朱杰,郑加柱,等.出租车轨迹数据的南京人群出行模式挖掘[J].测绘科学,2021,46(1):203-212.
|
|
QIU S N, ZHU J, ZHENG J Z, et al. Movement pattern mining of Nanjing residents based on taxi trajectory data[J]. Science of Surveying and Mapping, 2021,46(1):203-212.
|
4 |
郭蕾,刘文菊,王赜,等.融合谱聚类和多因素影响的兴趣点推荐方法[J].数据分析与知识发现,2022,6(5):77-88.
|
|
GUO L, LIU W J, WANG Z, et al. Point-of-interest recommendation with spectral clustering and multi-factors[J]. Data Analysis and Knowledge Discovery, 2022,6(5):77-88.
|
5 |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
|
6 |
SUN Lin, LIU Ruonan, XU Jiucheng, et al. An adaptive density peaks clustering method with fisher linear discriminant[J]. IEEE Access, 2019,7:72936-72955.
|
7 |
LIU Cong, CHEN Qianian, CHEN Yingxia, et al. A fast multiobjective fuzzy clustering with multimeasures combination[J]. Mathematical Problems in Engineering, 2019, 2019:1-21.
|
8 |
VAN Der VLIST R, TAAL C, et al. Tracking recurring patterns in time series using dynamic time warping[C]. 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019: 1-5.
|
9 |
翟璐莎. 最长公共子序列查询算法研究[D].秦皇岛:燕山大学,2018.
|
|
ZHAI L S. The research on the longest common subsequence query algorithm[D]. Qinhuangdao: Yanshan University,2018.
|
10 |
YOO Wonchul, KIM Taewan. Statistical trajectory-distance metric for nautical route clustering analysis using cross-track distance[J].Journal of Computational Design and Engineering, 2022,9(2): 731-754.
|
11 |
SALARPOUR, AMIR, KHOTANLOU, et al. Direction-based similarity measure to trajectory clustering[J]. IET Signal Processing, 2019, 13(1):70-76.
|
12 |
KHERIF F, LATYPOVA A. Principal component analysis[M]∥ Machine Learning. Academic Press, 2020: 209-225.
|
13 |
WANG T. Cotraining algorithm based on weighted principal component analysis and improved density peak clustering[J]. Security and Communication Networks, 2022.
|
14 |
CAO Jing, LIANG Maohan, LI Yan, et al. PCA-based hierarchical clustering of AIS trajectories with automatic extraction of clusters[C]. 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). IEEE, 2018: 448-452.
|
15 |
纪霞, 姚晟, 赵鹏. 相对邻域与剪枝策略优化的密度峰值聚类算法[J]. 自动化学报, 2020, 46(3): 562-575.
|
|
JI X, YAO S, ZHAO P. Relative neighborhood and pruning strategy optimized density peaks clustering algorithm[J]. Acta Automatica Sinica, 2020, 46(3): 562-575.
|
16 |
REN Chunhua, SUN Linfu, WU Qishi. Study on density peaks clustering based on hierarchical k-nearest neighbors[C]. 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE, 2019: 664-668.
|
17 |
ZHAO Jia, TANG Jingjing, FAN Tanghuai,et al.Density peaks clustering based on circular partition and grid similarity[J]. Concurrency & Computation: Practice&Experience, 2020, 32(7): 1-17.
|
18 |
WANG Xiaoyue, ABDULLAH, DING Hui,et al.Experimental comparison of representation methods and distance measures for time series data[J].Data Mining and Knowledge Discovery,2013, 26(2): 275-309.
|