Automotive Engineering ›› 2023, Vol. 45 ›› Issue (8): 1468-1478.doi: 10.19562/j.chinasae.qcgc.2023.08.017
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Wenguang Wu(),Shuangyue Tian,Zhiyong Zhang,Bin Zhang
Received:
2023-01-16
Revised:
2023-02-21
Online:
2023-08-25
Published:
2023-08-17
Contact:
Wenguang Wu
E-mail:wwglq@csust.edu.cn
Wenguang Wu,Shuangyue Tian,Zhiyong Zhang,Bin Zhang. Research on Semantic Segmentation of Uneven Features of Unpaved Road[J].Automotive Engineering, 2023, 45(8): 1468-1478.
1 | LIU W, WANG R, DING R, et al. On-line estimation of road profile in semi-active suspension based on unsprung mass acceleration[J]. Mechanical Systems and Signal Processing, 2020, 135: 106370. |
2 | HASSEN D B, MILADI M, ABBES M S, et al. Road profile estimation using the dynamic responses of the full vehicle model[J]. Applied Acoustics, 2019, 147: 87-99. |
3 | 刘浪, 张志飞, 鲁红伟, 等. 基于增广卡尔曼滤波并考虑车辆加速度的路面不平度识别[J]. 汽车工程, 2022, 44(2): 247-255,297. |
LIU Lang, ZHANG Zhifei, LU Hongwei, et al. Road roughness identification based on augmented kalman filtering with consideration of vehicle acceleration[J]. Automotive Engineering, 2022, 44(2): 247-255,297. | |
4 | 梁冠群, 赵通, 王岩, 等. 基于LSTM网络的路面不平度辨识方法[J]. 汽车工程, 2021, 43(4): 509-517,628. |
LIANG Guanqun, ZHAO Tong, WANG Yan, et al. Road unevenness identification based on LSTM network[J]. Automotive Engineering, 2021, 43(4): 509-517,628. | |
5 | LIANG G, ZHAO T, SHANGGUAN Z, et al. Experimental study of road identification by LSTM with application to adaptive suspension damping control[J]. Mechanical Systems and Signal Processing, 2022, 177: 109197. |
6 | QIN Y, XIANG C, WANG Z, et al. Road excitation classification for semi-active suspension system based on system response[J]. Journal of Vibration and Control, 2018, 24(13): 2732-2748. |
7 | YIĞIT H, KÖYLÜ H, EKEN S. Estimation of road surface type from brake pressure pulses of ABS[J]. Expert Systems with Applications, 2023, 212: 118726. |
8 | YOUSEFZADEH M, AZADI S, SOLTANI A. Road profile estimation using neural network algorithm[J]. Journal of Mechanical Science and Technology, 2010, 24(3): 743-754. |
9 | NGWANGWA H M, HEYNS P S, LABUSCHAGNE F J J, et al. Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation[J]. Journal of Terramechanics, 2010, 47(2): 97-111. |
10 | LUSHNIKOV N, LUSHNIKOV P. Methods of assessment of accuracy of road surface roughness measurement with profilometer[J]. Transportation Research Procedia, 2017, 20: 425-429. |
11 | KOCH C, GEORGIEVA K, KASIREDDY V, et al. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure[J]. Advanced Engineering Informatics, 2015, 29(2): 196-210. |
12 | YOUSAF M H, AZHAR K, MURTAZA F, et al. Visual analysis of asphalt pavement for detection and localization of potholes[J]. Advanced Engineering Informatics, 2018, 38: 527-537. |
13 | TEDESCHI A, BENEDETTO F. A real-time automatic pavement crack and pothole recognition system for mobile android-based devices[J]. Advanced Engineering Informatics, 2017, 32: 11-25. |
14 | HADJI I, WILDES R P. What do we understand about convolutional networks?[J]. arXiv preprint arXiv:, 2018. |
15 | BARAT C, DUCOTTET C. String representations and distances in deep convolutional neural networks for image classification[J]. Pattern Recognition, 2016, 54: 104-115. |
16 | 司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890-1920. |
SI Nianwen, ZHANG WenLin, QU Dan, et al. Representation visualization of convolutional neural networks: a survev[J]. ACTA AUTOMATICA SINICA, 2022, 48(8): 1890-1920. | |
17 | 沙爱民,童峥,高杰.基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. |
SHA Aimin, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China J. Highw. Transp., 2018, 31(1): 1-10. | |
18 | REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28. |
19 | LI J, LIU T, WANG X. Advanced pavement distress recognition and 3D reconstruction by using GA-DenseNet and binocular stereo vision[J]. Measurement, 2022, 201: 111760. |
20 | 李小路, 周依尔, 毕腾飞, 等. 轻量型感知激光雷达关键技术发展综述[J]. 中国激光, 2022: 1-28. |
LI Xiaolu, ZHOU Yier, BI Tengfei, et al. Review on key technologies of lightweight type-aware LiDAR[J]. Chinese Journal of Lasers, 2022: 1-28. | |
21 | BENEDEK C, MAJDIK A, NAGY B, et al. Positioning and perception in LIDAR point clouds[J]. Digital Signal Processing, 2021, 119: 103193. |
22 | THEUNISSEN J, TOTA A, GRUBER P, et al. Preview-based techniques for vehicle suspension control: A state-of-the-art review[J]. Annual Reviews in Control, 2021, 51: 206-235. |
23 | ZHAO D, WANG L, LI Y, et al. Extraction of preview elevation of road based on 3D sensor[J]. Measurement, 2018, 127: 104-114. |
24 | 刘家银,唐振民,王安东, 等. 基于多激光雷达与组合特征的非结构化环境负障碍物检测[J]. 机器人, 2017, 39(5): 638-651. |
LIU Jiayin, TANG Zhenmin, WANG Andong, et al. Negative obstacle detection in unstructured environment based on multiple LiDARs and compositional features[J]. Robot, 2017, 39(5): 638-651. | |
25 | GUO Y, WANG H, HU Q, et al. Deep learning for 3d point clouds: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364. |
26 | QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660. |
27 | QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30. |
28 | BEHLEY J, GARBADE M, MILIOTO A, et al. Semantickitti: a dataset for semantic scene understanding of lidar sequences[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9297-9307. |
29 | SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2446-2454. |
30 | CAESAR H, BANKITI V, LANG A H, et al. Nuscenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631. |
31 | 胡宇辉,王旭,胡家铭, 等. 越野环境下无人驾驶车辆技术研究综述[J]. 北京理工大学学报, 2021, 41(11): 1137-1144. |
HU Yuhui, WANG Xu, HU Jiaming, et al. An overview on unmanned vehicle technology in off-road environment[J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1137-1144. | |
32 | SHIN Y H, SON K W, LEE D C. Semantic segmentation and building extraction from airborne LiDAR data with multiple return using PointNet++[J]. Applied Sciences, 2022, 12(4): 1975. |
33 | 王乾廷,伊启中,林永南.越野路面不平度与车轮跳离路面量间的关系[J]. 系统仿真学报, 2008(11): 3040-3042. |
WANG Qianting, YI Qizhong, LIN Yongnan. Relation between off-road terrain unevenness and wheel jumping estimation[J]. Journal of System Simulation, 2008(11): 3040-3042. |
[1] | Zuliang Jin,Hanbing Wei,Liu Zheng,Lu Lou,Guofeng Zheng. Lightweight Semantic Segmentation Method Based on Local Window Cross Attention [J]. Automotive Engineering, 2023, 45(9): 1617-1625. |
[2] | Feng Gao,Defu Feng,Qiuxia Hu. Accelerating Technologies of Numerical Optimization for Motion Planning Designed by Nonlinear Model Predictive Control [J]. Automotive Engineering, 2023, 45(8): 1438-1447. |
[3] | Tao Lu,Xin Jin,Yifei Liao,Shengjie Huang,Yilin Yang,Guotao Xie,Xiaohui Qin. Visual SLAM Based on Jacobian Null-space Marginalization [J]. Automotive Engineering, 2023, 45(8): 1457-1467. |
[4] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[5] | Manjiang Hu,Binjie Mou,Zeyu Yang,Yougang Bian,Xiaohui Qin,Biao Xu. A Hybrid A* Path Planning Method Based on DBSCAN and Dichotomy [J]. Automotive Engineering, 2023, 45(3): 341-349. |
[6] | Jie Hu,Haoyan Liu,Minchao Zhang,Zhihao Zhang,Qi Zhu,Ruipeng Chen,Man Luo. Research on the Decision and Planning System of Automated Valet Parking Based on Finite State Machine [J]. Automotive Engineering, 2023, 45(2): 243-252. |
[7] | Runhui Huang,Likun Hu,Mingfang Su,Daye Xu,Aoran Chen. Semantic Segmentation Method of LiDAR Point Cloud Based on 3D Conical Grid [J]. Automotive Engineering, 2022, 44(8): 1173-1182. |
[8] | Liang Chu,Cheng Chang,Xu Wang,Di Zhao,Yanwu Xu. Research on Brake-by-Wire System and Pressure Control Algorithm for Advanced Automatic Driving [J]. Automotive Engineering, 2022, 44(3): 308-318. |
[9] | Dafang Wang,Lei Liu,Jiang Cao,Gang Zhao,Wenshuo Zhao,Wei Tang. Semantic Segmentation Method of Autonomous Driving Images Based on Atrous Spatial Pyramid Pooling [J]. Automotive Engineering, 2022, 44(12): 1818-1824. |
[10] | Dafang Wang,Hai Shang,Jiang Cao,Tao Wang,Xiangteng Xia,Yulin Han. Semantic Segmentation Method of Point Cloud in Automatic Driving Scene Based on Self-attention Mechanism [J]. Automotive Engineering, 2022, 44(11): 1656-1664. |
[11] | Shengjie Huang,Manjiang Hu,Yunshui Zhou,Zhouping Yin,Xiaohui Qin,Yougang Bian,Qianqian Jia. Vehicle Visual SLAM in Dynamic Scenes Based on Semantic Segmentation and Motion Consistency Constraints [J]. Automotive Engineering, 2022, 44(10): 1503-1510. |
[12] | Zilong Liu,Xiangfei Shen. Small Target Detection Method for Dual-Modal Autonomous Driving with Yolo v5 and Lite-HRNet Fusion [J]. Automotive Engineering, 2022, 44(10): 1511-1520. |
[13] | Linyan Wang,Huijun Zhang,Hongyu Hu. Effect of Driving Experience on Take-Over Performance of L3 Automatic Driving [J]. Automotive Engineering, 2022, 44(10): 1521-1526. |
[14] | Xiangteng Xia,Dafang Wang,Jiang Cao,Gang Zhao,Jingming Zhang. Semantic Segmentation Method of On-board Lidar Point Cloud Based on Sparse Convolutional Neural Network [J]. Automotive Engineering, 2022, 44(1): 26-35. |
[15] | Xiaohui Qin,Zhewen Wang,Tao Pang,Weiqing Shi,Ning Sun,Manjiang Hu. Vehicle Positioning Method Based on Tight Coupling of Vehicle Model in Enclosed Environments [J]. Automotive Engineering, 2021, 43(9): 1328-1335. |