Automotive Engineering ›› 2023, Vol. 45 ›› Issue (10): 1815-1823.doi: 10.19562/j.chinasae.qcgc.2023.10.004
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Teng Cheng1,2,3(),Dengchao Hou1,2,3,Qiang Zhang4,Qin Shi1,2,3,Ligang Guo1,2,3
Received:
2023-02-23
Revised:
2023-04-04
Online:
2023-10-25
Published:
2023-10-23
Contact:
Teng Cheng
E-mail:cht616@hfut.edu.cn
Teng Cheng,Dengchao Hou,Qiang Zhang,Qin Shi,Ligang Guo. Research on Multi-modal Late Fusion Framework Based on D-S Evidence Theory[J].Automotive Engineering, 2023, 45(10): 1815-1823.
"
多模态感知网络组合 | AP/% | mAP@0.5/% | ||||||
---|---|---|---|---|---|---|---|---|
机动车 | 非机动车 | 行人 | ||||||
本文融合方法 | 投票法融合 | 本文融合方法 | 投票法融合 | 本文融合方法 | 投票法融合 | 本文融合方法 | 投票法融合 | |
FasterRCNN、Second | 90.58 | 90.10 | 70.36 | 68.91 | 69.37 | 66.45 | 76.77 | 75.16 |
FasterRCNN、PointRCNN | 90.95 | 90.44 | 68.96 | 68.26 | 68.09 | 66.87 | 76.00 | 75.19 |
FasterRCNN、Pointpillar | 90.33 | 90.10 | 65.86 | 64.31 | 67.91 | 66.06 | 74.49 | 73.49 |
CenterNet、PointRCNN | 90.59 | 90.53 | 72.13 | 71.38 | 66.06 | 64.82 | 76.26 | 75.38 |
CenterNet、Second | 90.94 | 90.94 | 71.93 | 70.92 | 66.54 | 65.33 | 76.47 | 75.73 |
CenterNet、Pointpillar | 90.33 | 90.30 | 69.43 | 67.40 | 62.75 | 61.27 | 74.17 | 72.99 |
Yolov3、Second | 97.35 | 96.90 | 94.86 | 94.34 | 92.05 | 91.21 | 94.75 | 94.15 |
Yolov3、Pointpillar | 97.25 | 96.85 | 94.86 | 94.46 | 92.05 | 90.62 | 94.75 | 93.98 |
Yolov3、PointRCNN | 97.19 | 96.79 | 95.11 | 94.90 | 91.16 | 90.48 | 94.49 | 94.06 |
Voxel-RCNN、Yolov3 | 97.43 | 97.05 | 95.12 | 94.67 | 91.33 | 90.52 | 94.62 | 94.08 |
Voxel-RCNN、CenterNet | 91.62 | 91.55 | 74.73 | 73.87 | 64.07 | 63.95 | 76.81 | 76.46 |
Voxel-RCNN、FasterRCNN | 90.64 | 90.43 | 69.67 | 68.94 | 67.36 | 67.01 | 75.89 | 75.46 |
1 | 张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758-771. |
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI Transactions on Intelligent Systems, 2020, 15(4): 758–771. | |
2 | ZHOU T, JIANG K, XIAO Z, et al. Object detection using multi-sensor fusion based on deep learning[C].19th COTA International Conference of Transportation Professionals, 2019. |
3 | VORA S, LANG A H, HELOU B, et al. Pointpainting: sequential fusion for 3D object detection[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4604-4612. |
4 | CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C].Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017: 1907-1915. |
5 | QI C R, LIU W, WU C, et al. Frustum pointnets for 3D object detection from RGB-D data[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 918-927. |
6 | PANG S, MORRIS D, RADHA H. CLOCs: camera-LiDAR object candidates fusion for 3D object detection[C].2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10386-10393. |
7 | 纪嘉树. 基于多传感器融合的无人驾驶环境感知技术研究[D].济南:山东大学,2022. |
JI Jiashu. Research on environment perception technology of unmanned driving based on multi-sensor fusion[D]. Jinan:Shandong University, 2022. | |
8 | 甘耀东,郑玲,张志达,等.融合毫米波雷达与深度视觉的多目标检测与跟踪[J].汽车工程,2021,43(7):1022-1029,1056.DOI:10.19562/j.chinasae.qcgc.2021.07.009. |
GAN Yaodong, ZHENG Ling, ZHANG Zhida, et al. Multi-target detection and tracking with fusion of millimeter-wave radar and deep vision[J]. Automotive Engineering, 2021,43(7):1022-1029,1056.DOI:10.19562/j.chinasae.qcgc.2021.07.009. | |
9 | 李哲,于梦茹.基于多种LBP特征集成学习的车标识别[J].计算机工程与应用,2019,55(20):134-138. |
LI Zhe, YU Mengru. Vehicle-logo recognition based on ensemble learning with multiple LBP features[J]. Computer Engineering and Applications, 2019, 55(20):134-138. | |
10 | 王钦民,李宽,杨灿群.一种基于分类器投票的车牌定位方法[J].计算机工程与科学,2016,38(6):1200-1206. |
WANG Qinmin, LI Kuan, YANG Canqun. A license plate location method based on classifier voting[J]. Computer Engineering & Science, 2016, 38(6): 1200-1206. | |
11 | 刘丽丽,周绍光,丁倩,等.基于最大投票融合的高光谱影像半监督分类[J].地理空间信息,2020,18(5):20-25,6. |
LIU Lili, ZHOU Shaoguang, DING Qian,et al. Semi-supervised classification of hyperspectral images based on maximum voting fusion[J]. Geospatial Information, 2020, 18(5): 20-25,6. | |
12 | 李悦. 多传感器信息融合在刀具磨损在线监测中的应用研究[D].太原:太原科技大学,2020. |
LI Yue. Research on application of multi-sensor information fusion in tool wear condition monitoring[D].Taiyuan :Taiyuan University of Science and Technology, 2020. | |
13 | 赵宏伟,何劲松.基于贝叶斯框架融合深度信息的显著性检测[J].光电工程,2018,45(2):13-20. |
ZHAO Hongwei, HE Jinsong. Saliency detection method fused depth information based on Bayesian framework[J]. Opto-Electronic Engineering, 2018, 45(2): 13-20. | |
14 | 陈雪敏. 基于贝叶斯融合的图像显著性检测[D].天津:河北工业大学,2019. |
CHEN Xuemin. Image saliency detection based on baytes integration[D]. Tianjin:Hebei University of Technology, 2019. | |
15 | 李伟,周靖,杜秀梅,等.基于D-S证据信息融合方法的全地形车行驶工况辨识[J].重庆大学学报,2022,45(3):1-11. |
LI Wei, ZHOU Jing, DU Xiumei, et al.Driving condition identification of all-terrain vehicles based on D-S evidence information fusion method[J]. Journal of Chongqing University, 2022, 45(3): 1-11. | |
16 | 姬晓飞,石宇辰,王昱,等.D-S理论多分类器融合的光学遥感图像多目标识别[J].电子测量与仪器学报,2020,34(5):127-132. |
JI Xiaofei, SHI Yuchen, WANG Yu, et al. D-S theory based multi-classifier fusion optical remote sensing image target recognition[J]. Journal of Electronic Measurement and Instrument, 2020, 34(5): 127-132. | |
17 | SHAFER G. Dempster-shafer theory[J]. Encyclopedia of Artificial Intelligence, 1992, 1: 330-331. |
18 | 周文文. 多分类器融合算法研究与仿真系统实现[D].南京:南京航空航天大学,2021. |
ZHOU Wenwen. Research on multi-classifier fusion algorithm and realization of simulation system[D]. Nanjing :Nanjing University Of Aeronautics And Astronautics, 2021. | |
19 | TURHAN H I, DEMIREKLER M, GUNAY M. A novel methodology for target classification based on dempster-shafer theory[C].Belief Functions: Theory and Applications: Third International Conference, BELIEF 2014, Oxford, UK, September 26-28, 2014. Proceedings 3. Springer International Publishing, 2014: 393-402. |
20 | CHAVEZ-GARCIA R O, AYCARD O. Multiple sensor fusion and classification for moving object detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(2): 525-534. |
21 | CHAVEZ-GARCIA R O, VU T D, AYCARD O. Fusion at detection level for frontal object perception[C].2014 IEEE Intelligent Vehicles Symposium Proceedings. IEEE, 2014: 1225-1230. |
22 | ZHU C, QIN B, XIAO F, et al. A fuzzy preference-based Dempster-Shafer evidence theory for decision fusion[J]. Information Sciences, 2021, 570: 306-322. |
23 | DRISS M, KOUBAA A, ATITALLAH S B, et al. Fusion of convolutional neural networks based on Dempster–Shafer theory for automatic pneumonia detection from chest X‐ray images[J]. International Journal of Imaging Systems and Technology, 2022, 32(2):658-672. |
24 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28. |
25 | SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538. |
26 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
27 | REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv preprint arXiv:, 2018. |
28 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:, 2020. |
29 | DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578. |
30 | MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1):1-9. |
[1] | Jie Hu,Xiao Zhang,Min Wei,Lin Chen,Haihua Qing,Changbin Gao. Vehicle Fault Location Method Based on Fuzzy BN and Improved Evidence Theory [J]. Automotive Engineering, 2023, 45(10): 1975-1983. |
[2] | Runze Feng,Kun Jiang,Weiguang Yu,Diange Yang. Chinese Traffic Sign Recognition Based on Two-stage Classification Algorithm [J]. Automotive Engineering, 2022, 44(3): 434-441. |
[3] | Zhangpeng Gong,Guoye Wang,Shi Yu. The Algorithm of Multi⁃Category Object Recognition in Road Scene Based on Voxel Network [J]. Automotive Engineering, 2021, 43(4): 469-477. |
[4] | Teng Cheng,Lei Sun,Dengchao Hou,Qin Shi,Junning Zhang,Jiong Chen,He Huang. Multi-level and Multi-modal Target Detection Based on Feature Fusion [J]. Automotive Engineering, 2021, 43(11): 1602-1610. |
[5] | Huang Wei, Liu Haijiang & Li Min. Identification Method for Feature Points of Drivability Evaluation Indicators in Starting Condition [J]. , 2019, 41(3): 259-265. |