Automotive Engineering ›› 2023, Vol. 45 ›› Issue (10): 1908-1922.doi: 10.19562/j.chinasae.qcgc.2023.10.012
Special Issue: 新能源汽车技术-电驱动&能量管理2023年
Previous Articles Next Articles
Haodi Li,Zhiguo Zhao(),Peng Tang,Yongping Hou
Received:
2023-03-07
Revised:
2023-04-18
Online:
2023-10-25
Published:
2023-10-23
Contact:
Zhiguo Zhao
E-mail:zhiguozhao@tongji.edu.cn
Haodi Li,Zhiguo Zhao,Peng Tang,Yongping Hou. Power Split Hybrid System Mode Transition Performance Test Method Based on Load Compensation[J].Automotive Engineering, 2023, 45(10): 1908-1922.
"
符号 | 描述 | 数值 |
---|---|---|
m | 车身质量/kg | 1 530 |
f | 滚动阻力系数 | 0.013 7 |
Cd | 空气阻力系数 | 0.307 |
A | 迎风面积/m2 | 2.19 |
R | 车轮半径/m | 0.31 |
iFD | 主减速比 | 3.529 |
ρ1 | 前行星排传动比 | 3.174 |
ρ2 | 后行星排传动比 | 2.355 |
JMG1 | MG1电机惯量/(kg·m2) | 0.041 |
JMG2 | MG2电机惯量/(kg·m2) | 0.072 |
JENG | 发动机惯量/(kg·m2) | 0.182 |
Jveh | 车辆等效惯量/(kg·m2) | 12.05 |
JS1 | 前排太阳轮惯量/(kg·m2) | 0.001 |
JS2 | 后排太阳轮惯量/(kg·m2) | 0.001 |
JR | 齿圈惯量/(kg·m2) | 0.002 |
JC | 行星架惯量/(kg·m2) | 0.002 |
cveh | 车辆等效阻尼/(N·m·s·rad-1) | 0.005 |
cMG1 | MG1电机输出轴阻尼/(N·m·s·rad-1) | 0.001 |
cMG2 | MG2电机输出轴阻尼/(N·m·s·rad-1) | 0.002 |
cTDS | 扭转减振器阻尼/(N·m·s·rad-1) | 0.1 |
kMG1 | MG1电机输出轴刚度/(N·m·rad-1) | 7 500 |
kMG2 | MG2电机输出轴刚度/(N·m·rad-1) | 12 500 |
kTDS | 扭转减振器刚度/(N·m·rad-1) | 619 |
kL | DHT输出轴刚度/(N·m·rad-1) | 2 863.3 |
1 | 欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006,28(4): 317-321. |
OUYANG M G. Development strategies and countermeasures of energy saving and new energy vehicles in our country[J]. Automotive Engineering, 2006,28(4): 317-321. | |
2 | WU G, ZHANG X, DONG Z. Powertrain architectures of electrified vehicles: review, classification and comparison[J]. Journal of the Franklin Institute, 2015, 352(2): 425-448. |
3 | ZHANG X, LI S E, PENG H, et al. Efficient exhaustive search of power-split hybrid powertrains with multiple planetary gears and clutches[J]. Journal of Dynamic Systems Measurement & Control, 2015, 137(12): 121006. |
4 | 赵治国, 范佳琦, 蒋蓝星, 等. 复合功率分流系统发动机起动H∞鲁棒优化控制[J]. 汽车工程, 2020, 42(4): 417-423,430. |
ZHAO Z G, FAN J Q, JIANG L X, et al. Engine start-up H∞ robust optimal control of the compound power-split system[J]. Automotive Engineering, 2020, 42(4): 417-423,430. | |
5 | 赵治国, 付靖, 蒋蓝星, 等. 复合功率分流系统发动机起动模型预测控制[J].机械工程学报, 2020, 56(22): 201-209. |
ZHAO Z G, FU J, JIANG L X, et al. Model predictive control of engine start-up for compound power-split hybrid powertrain[J]. Journal of Mechanical Engineering, 2020, 56(22): 201-209. | |
6 | 赵治国, 代显军, 王晨, 等. 复合功率分流混合电动轿车驱动模式切换的协调控制[J]. 汽车工程, 2015, 37(3): 260-265,259. |
ZHAO Z G, DAI X J, WANG C, et al. Coordinated control of driving mode switching of compound power-split hybrid electric car[J]. Automotive Engineering, 2015, 37(3): 260-265,259. | |
7 | LIU W, SONG Q, LI Y, et al. A novel driver model for real-time simulation on electric powertrain test bench[C]. SAE Paper 2017-01-2460. |
8 | FAJRI P, PRABHALA V, FERDOWSI M. Emulating on-road operating conditions for electric-drive propulsion systems[J]. IEEE Transactions on Energy Conversion, 2016, 31(1):1-11. |
9 | KAROL KYSLAN, FRANTIŠEK ĎUROVSKÝ. Control of a test bench for dynamic emulation of mechanical loads[J]. Procedia Engineering, 2012, 48: 352-357. |
10 | WANG Z, LV H L, ZHOU X J, et al. Design and modeling of a test bench for dual-motor electric drive tracked vehicles based on a dynamic load emulation method[J]. Sensors, 2018, 18(7). |
11 | FAJRI P, AHMADI R, FERDOWSI M. Control approach based on equivalent vehicle rotational inertia suitable for motor-dynamometer test bench emulation of electric vehicles[C]. 2013 International Electric Machines & Drives Conference. IEEE, 2013. |
12 | LIU P, JIN Z, HUA Y, et al. Development of test-bed controller for powertrain of HEV[J]. Energies, 2020, 13(13): 3372. |
13 | AKPOLAT Z H, ASHER G M. Experimental dynamometer emulation of nonlinear mechanical loads[J]. IEEE Transactions on Industry Applications, 1999, 35(6): 1367-1373. |
14 | GAN C, TODD R, APSLEY J M. Drive system dynamics compensator for a mechanical system emulator[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 70-78. |
15 | 刘和平, 战祥真, 李红新, 等.惯量自补偿的纯电动汽车动力系统模拟试验台研究[J].电机与控制学报, 2011, 15(10): 55-62. |
LIU H P, ZHAN X Z, LI H X, et al. Research on self-compensated inertia test rig of pure electric vehicle dynamic system[J]. Electric Machines and Control, 2011, 15(10): 55-62. | |
16 | 王冠峰, 宋强, 赵卢楷. 电驱动系统台架负载模拟精度补偿算法研究[J]. 汽车工程, 2022, 44(3): 426-433. |
WANG G F, SONG Q, ZHAO L K. Research on compensation aalgorithm for load simulation accuracy of electric drive system test bench[J]. Automotive Engineering, 2022, 44(3): 426-433. | |
17 | LI H D, ZHAO Z G, TANG P. Load emulation compensation control of a test bench based on rigid-flexible coupling transmission for a vehicle electric drive system[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(1006516): 1-16.[ 12 ] LIU P, JIN Z, HUA Y, et al. Development of test-bed controller for powertrain of HEV[J]. Energies, 2020, 13(13): 3372. |
[1] | Yang Ye, Zhang Youtong, Shan Xiaoming. Research on Hybrid Mode Transition Control with Engine Start [J]. Automotive Engineering, 2019, 41(12): 1356-1364. |