1 |
方川, 袁殿, 邵扬斌, 等. 面向冬奥示范的新一代燃料电池系统技术突破 [J].汽车工程, 2022, 44(4): 535-544.
|
|
FANG C, YUAN D, SHAO Y B, et al. Technical breakthrough of new generation fuel cell system for winter olympics application environment [J].Automotive Engineering, 2022, 44(4): 535-544.
|
2 |
朱成, 刘頔, 滕欣余, 等. 新能源汽车综合经济性对比分析及预测研究 [J].汽车工程, 2023, 45(2): 333-340.
|
|
ZHU C, LIU D, TENG X Y, et al. Comparative analysis and forecast research on comprehensive economy of new energy vehicles [J].Automotive Engineering, 2023, 45(2): 333-340.
|
3 |
TIRNOVAN R, GIURGEA S. Efficiency improvement of a PEMFC power source by optimization of the air management [J]. International Journal of Hydrogen Energy, 2012, 37(9): 7745-7756.
|
4 |
李先允, 冯瀚飞. 基于NSGA2算法的燃料电池系统净功率优化 [J].电源技术, 2023, 47(1): 83-87.
|
|
LI X Y, FENG H F. Net power optimization of fuel cell system based on NSGA2 algorithm [J].Chinese Journal of Power Sources, 2023, 47(1): 83-87.
|
5 |
TAN J, HU H, LIU S, et al. Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance [J]. International Journal of Hydrogen Energy, 2022, 47(84): 35790-35809.
|
6 |
YIN L, LI Q, BREAZ E, et al. Net power enhancement of PEMFC system based on dual loop multivariable coordinated management [J]. IEEE Transactions on Industrial Electronics, 2023.
|
7 |
REZK H, WILBERFORCE T, SAYED E T, et al. Finding best operational conditions of PEM fuel cell using adaptive neuro-fuzzy inference system and metaheuristics [J]. Energy Reports, 2022, 8: 6181-6190.
|
8 |
FENG S, HUANG W, HUANG Z, et al. Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model [J]. Applied Energy, 2022, 317: 119158.
|
9 |
LI Q, YANG W, YIN L, et al. Real-time implementation of maximum net power strategy based on sliding mode variable structure control for proton-exchange membrane fuel cell system [J]. IEEE Transactions on Transportation Electrification, 2020, 6(1): 288-297.
|
10 |
PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H. Control of fuel cell power systems: principles, modeling, analysis and feedback design [M]. Springer Science & Business Media, 2004.
|
11 |
ZHANG B, HAO D, CHEN J, et al. Modeling and decentralized predictive control of ejector circulation-based PEM fuel cell anode system for vehicular application [J]. Automotive Innovation, 2022, 5(3): 333-345.
|
12 |
贾玉茹. 氢燃料电池发动机进气系统建模与控制策略研究 [D]. 太原: 太原理工大学, 2021.
|
|
JIA Y R. Research on modeling and control of hydrogen fuel cell engine intake system [D]. Taiyuan: Taiyuan University of Technology, 2021.
|
13 |
杨朵. 燃料电池空气供给系统控制与故障诊断策略研究 [D]. 合肥: 中国科学技术大学, 2021.
|
|
YANG D. Research on control and fault diagnosis of fuel cell air supply system [D]. Hefei: University of Science and Technology of China, 2021.
|
14 |
彭书浩. 质子交换膜燃料电池热管理系统控制策略研究 [D]. 杭州: 浙江大学, 2023.
|
|
PENG S H. Research of control strategy on thermal management system of proton exchange membrane fuel cell [D]. Hangzhou: Zhejiang University, 2023.
|
15 |
李文涛. 质子交换膜燃料电池系统建模与参数优化设计 [D]. 淄博: 山东理工大学, 2022.
|
|
LI W T. Proton exchange membrane fuel cell system modelingand parameter optimization design [D]. Zibo: Shandong University of Technology, 2022.
|
16 |
朱明原, 刘文博, 刘杨, 等. 氢能与燃料电池关键科学技术:挑战与前景 [J].上海大学学报(自然科学版), 2021, 27(3): 411-443.
|
|
ZHU M Y, LIU W B, LIU Y, et al. Key scientific and technological principles of hydrogen energy and fuel cells:challenges and prospects [J].Journal of Shanghai University(Natural Science Edition), 2021, 27(3): 411-443.
|