1 |
CHE Y, FOLEY A, EL-GINDY M, et al. Joint estimation of inconsistency and state of health for series battery packs[J]. Automotive Innovation, 2021, 4(1): 103-116.
|
2 |
CHANG L, MA C, ZHANG Y, et al. Experimental assessment of the discharge characteristics of multi-type retired lithium-ion batteries in parallel for echelon utilization[J]. Journal of Energy Storage, 2022, 55: 105539.
|
3 |
MIDDLEMISS L, RENNIE A, SAYERS R, et al. Characterisation of batteries by electrochemical impedance spectroscopy[J]. Energy Reports, 2020, 6: 232-241.
|
4 |
PANG Z, YANG K, SONG Z, et al. A new method for determining SOH of lithium batteries using the real-part ratio of EIS specific frequency impedance[J]. Journal of Energy Storage, 2023, 72: 108693.
|
5 |
BUCHICCHIO E, ANGELIS A D, SANTONI F, et al. Battery SOC estimation from EIS data based on machine learning and equivalent circuit model[J]. Energy, 2023, 283: 128461.
|
6 |
IVERS-TIFFEE E, WEBER A. Evaluation of electrochemical impedance spectra by the distribution of relaxation times[J]. Journal of the Ceramic Society of Japan, 2017, 125(4): 193-201.
|
7 |
ZHANG Q, WANG D, SCHALTZ E, et al. Degradation mechanism analysis and state-of-health estimation for lithium-ion batteries based on distribution of relaxation times[J]. Journal of Energy Storage, 2022, 55: 105386.
|
8 |
杨莹莹, 魏学哲, 刘耀锋, 等. 车用锂离子电池交流加热的研究[J]. 汽车工程, 2016, 38(7): 901-908.
|
|
YANG Y, WEI X, LIU Y, et al. Research on AC heating of lithium-ion batteries for vehicles [J]. Automotive Engineering, 2016, 38 (7): 901-908.
|
9 |
SHEN S, SADOUGHI M, LI M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Applied Energy, 2020, 260: 114296.
|
10 |
PATIL M, TAGADE P, HARIHARAN K, et al. A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation[J]. Applied Energy, 2015, 159: 285-297.
|
11 |
HUANG H, MENG J, WANG Y, et al. An enhanced data-driven model for lithium-ion battery state-of-health estimation with optimized features and prior knowledge[J]. Automotive Innovation, 2022, 5(2): 134-145.
|
12 |
ZHANG Y, XIONG R, HE H, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705.
|
13 |
HE W, WILLIARD N, CHEN C, et al. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation[J]. International Journal of Electrical Power & Energy Systems, 2014, 62: 783-791.
|
14 |
CHU X, XUE F, LIU T, et al. Adaptive fitting capacity prediction method for lithium-ion batteries[J]. Automotive Innovation, 2022, 5(4): 359-375.
|
15 |
来鑫, 陈权威, 邓聪, 等. 一种基于电化学阻抗谱的大规模退役锂离子电池的软聚类方法[J]. 电工技术学报, 2022, 37(23): 6054-6064.
|
|
LAI X, CHEN Q, DENG C, et al. A soft clustering method for large-scale retired lithium-ion batteries based on electrochemical impedance spectroscopy [J]. Journal of Electrical Engineering Technology, 2022, 37 (23): 6054-6064.
|
16 |
贾俊, 胡晓松, 邓忠伟, 等. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14): 141-149,159.
|
|
JIA J, HU X, DENG Z, et al. Data driven comprehensive evaluation of lithium-ion battery health status and screening of abnormal batteries [J]. Journal of Mechanical Engineering, 2021, 57 (14): 141-149,159.
|
17 |
向兆军, 胡凤玲, 罗明华, 等. 基于电池组模型和聚类算法的锂离子电池组SOC不一致估计[J]. 机械工程学报, 2020, 56(18): 154-163.
|
|
XIANG Z, HU F, LUO M, et al. Inconsistent SOC estimation of lithium-ion battery packs based on battery pack models and clustering algorithms [J]. Journal of Mechanical Engineering, 2020, 56 (18): 154-163.
|
18 |
WANG Y, TAN J, LIU Z, et al. Lithium-ion battery screening by K-means with DBSCAN for denoising[J]. Computers, Materials & Continua, 2020, 65(3): 2111-2122.
|
19 |
HE Z, GAO M, MA G, et al. Battery grouping with time series clustering based on affinity propagation[J]. Energies, 2016, 9(7): 561.
|