| [1] |
万银辉.铝合金汽车保险杠横梁的轻量化设计及其性能研究 [D].长沙:湖南大学,2013.
|
|
WAN Y H. Lightweight design and properties’ research of aluminum automotive bumper beam [D]. Changsha:Hunan University, 2013.
|
| [2] |
GUO X N, WANG L, SHEN Z R, et al. Constitutive model of structural aluminum alloy under cyclic loading[J]. Construction and Building Materials, 2018,180:643-654.
|
| [3] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985,21(1):31-48.
|
| [4] |
PRASANNAVENKADESAN V, PANDITHEVAN P. Bone drilling simulation using Johnson-Cook model combined with Cowper-Symonds model validated with in-vitro experiments[J]. Mechanics of Advanced Materials and Structures, 2022,29(25):4546-4556.
|
| [5] |
WAGENHOFER M, ERICKSON-NATISHAN M, ARMSTRONG R W, et al. Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086[J]. Scripta Materialia, 1999,41(11):1177-1184.
|
| [6] |
VOCE E. The relationship between stress and strain for homogeneous deformations[J]. Journal of the Institute of Metals, 1948,74:537-562.
|
| [7] |
ZHAO K M, LEE J K. Finite element analysis of the three-point bending of sheet metals[J]. Journal of Materials Processing Technology, 2002,122(1):6-11.
|
| [8] |
ZIEGLER H. A modification of prager’s hardening rule[J]. Quarterly Applied Mathematics, 1959,17(1):55-65.
|
| [9] |
REZAIEE-PAJAND M, SINAIE S. On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction[J]. International Journal of Solids and Structures, 2009,46(16):3009-3017.
|
| [10] |
余海燕, 王友. 一种基于CHABOCHE理论的混合硬化模型及其在回弹仿真中的应用[J]. 机械工程学报, 2015, 51(16):127-134.
|
|
YU H Y, WANG Y. A combined hardening model based on chaboche theory and its application in the springback simulation[J]. Journal of Mechanical Engineering, 2015,51(16):127-134.
|
| [11] |
FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial bauschinger effect[J]. Materials at High Temperatures, 2007,24(1):11-26.
|
| [12] |
CHABOCHE J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986,2(2):149-188.
|
| [13] |
LEE M G, HAN C S, CHUNG K, et al. Influence of back stresses in parts forming on crashworthiness[J]. Journal of Materials Processing Technology, 2005,168(1):49-55.
|
| [14] |
WILLIAMS B W, SIMHA C H M, ABEDRABBO N, et al. Effect of anisotropy, kinematic hardening, and strain-rate sensitivity on the predicted axial crush response of hydroformed aluminium alloy tubes[J]. International Journal of Impact Engineering, 2010,37(6):652-661.
|
| [15] |
LEE M G, KIM D, KIM C M, et al. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part II: characterization of material properties[J]. International Journal of Plasticity, 2005,21(5):883-914.
|
| [16] |
LEE S Y, YOON S Y, KIM J H, et al. Evaluation of loading-path-dependent constitutive models for springback prediction in martensitic steel forming[J]. International Journal of Mechanical Sciences, 2023,251:108317.
|
| [17] |
RYOU H, CHUNG K, YOON J W, et al. Incorporation of sheet-forming effects in crash simulations using ideal forming theory and hybrid membrane and shell method[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2005,127(1):182-192.
|
| [18] |
KOUBAA S, MARS J, WALI M, et al. Numerical study of anisotropic behavior of Aluminum alloy subjected to dynamic perforation[J]. International Journal of Impact Engineering, 2017,101:105-114.
|
| [19] |
段永川, 孙莉莉, 张芳芳, 等. 高强钢变模量运动强化本构模型匹配与解耦标定策略研究[J]. 机械工程学报, 2023, 59(2): 80-95.
|
|
DUAN Y C, SUN L L, ZHANG F F, et al. Research on matching of variable modulus kinematic hardening constitutive models and decoupling calibration strategy for high-strength steel[J]. Journal of Mechanical Engineering, 2023, 59(2): 80-95.
|
| [20] |
OMERSPAHIC E, MATTIASSON K, ENQUIST B. Identification of material hardening parameters by the three-point bending of metal sheets[J]. International Journal of Mechanical Sciences, 2006,48(12):1525-1532.
|
| [21] |
WU M Z, FAN S G, ZHOU H, et al. Study on constitutive model of cyclic elastoplastic behavior of 6082-T6 Aluminum alloy[J]. Journal of Materials in Civil Engineering, 2024, 36(5):1-14.
|