Automotive Engineering ›› 2025, Vol. 47 ›› Issue (10): 2004-2015.doi: 10.19562/j.chinasae.qcgc.2025.10.016
Zexi Tang1,Xiangning Liao1,Fusheng Bai1(
),Hao Luo1,Jie Li2
Received:2025-02-28
Revised:2025-04-16
Online:2025-10-25
Published:2025-10-20
Contact:
Fusheng Bai
E-mail:fsbai@cqnu.edu.cn
Zexi Tang,Xiangning Liao,Fusheng Bai,Hao Luo,Jie Li. A Robust Sound Field Zoning Control Method Based on Error Probability Model for a Car Cabin[J].Automotive Engineering, 2025, 47(10): 2004-2015.
"
| 方法 | ACC-LD方法 | ACC-LD-WC方法 | ACC-LD-P方法 | |
|---|---|---|---|---|
| 明区 | 理想情况 | 实际情况 | 实际情况 | 实际情况 |
| I | 28.65 | 17.70 | 23.89 | 26.53 |
| II | 29.23 | 19.71 | 24.29 | 27.11 |
| III | 29.95 | 21.58 | 25.35 | 28.26 |
| IV | 26.31 | 19.51 | 23.00 | 25.01 |
| I, II | 31.49 | 17.95 | 24.04 | 28.11 |
| I, III | 27.95 | 17.54 | 22.28 | 26.09 |
| I, IV | 25.52 | 16.43 | 20.47 | 23.65 |
| II, III | 25.65 | 19.08 | 21.94 | 24.61 |
| II, IV | 25.47 | 17.62 | 22.88 | 24.53 |
| III, IV | 28.75 | 20.20 | 24.10 | 27.18 |
| I, II, III | 30.54 | 18.11 | 22.86 | 27.43 |
| I, II, IV | 26.43 | 17.72 | 21.88 | 24.92 |
| I, III, IV | 29.14 | 16.69 | 21.86 | 26.95 |
| II, III, IV | 29.06 | 19.32 | 23.86 | 28.12 |
"
| 方法 | ACC-LD方法 | ACC-LD-WC方法 | ACC-LD-P 方法 | ||||
|---|---|---|---|---|---|---|---|
| 明区 | 理想 | 实际 | 实际 | 实际 | |||
均值 | 均值 | MD | 均值 | MD | 均值 | MD | |
| I | 1.83 | 2.50 | 4.02 | 2.64 | 3.58 | 2.43 | 2.01 |
| II | 0.90 | 1.39 | 1.69 | 1.58 | 3.03 | 1.36 | 1.27 |
| III | 1.32 | 1.69 | 0.84 | 1.99 | 1.86 | 1.71 | 0.65 |
| IV | 1.12 | 1.61 | 0.80 | 1.99 | 2.17 | 1.63 | 0.56 |
| I, II | 1.97 | 2.50 | 2.28 | 2.46 | 3.61 | 2.49 | 2.18 |
| I, III | 2.15 | 3.02 | 2.75 | 2.75 | 4.93 | 2.80 | 1.60 |
| I, IV | 2.63 | 3.65 | 2.81 | 3.50 | 4.73 | 3.47 | 1.75 |
| II, III | 1.45 | 2.66 | 4.39 | 2.42 | 4.66 | 2.41 | 2.09 |
| II, IV | 1.34 | 2.47 | 2.16 | 2.45 | 3.53 | 2.32 | 1.58 |
III, V | 1.52 | 1.91 | 2.43 | 1.99 | 3.87 | 2.00 | 2.25 |
| I, II,III | 2.28 | 3.32 | 3.82 | 3.13 | 3.44 | 3.24 | 1.27 |
| I, II,IV | 2.47 | 3.43 | 8.26 | 3.30 | 4.05 | 3.41 | 1.38 |
I, III,IV | 2.84 | 3.47 | 2.26 | 3.60 | 6.62 | 3.45 | 1.66 |
| II,III,IV | 1.78 | 3.08 | 8.68 | 2.71 | 6.26 | 2.67 | 1.67 |
| [1] | DRUYVESTEYN W F, GARAS J. Personal sound[J]. Journal of the Audio Engineering Society, 1997, 45 (9): 685-701. |
| [2] | TU Z, LU J, QIU X. Robustness of a compact endfire personal audio system against scattering effects[J]. Journal of the Acoustical Society of America, 2016, 140 (4): 2720-2724. |
| [3] | JEON S, CHOI J. Personal audio system for neckband headset with low computational complexity[J]. Journal of the Acoustical Society of America, 2020, 148 (6): 3913-3927. |
| [4] | CHANG J H, LEE C H, PARK J Y, et al. A realization of sound focused personal audio system using acoustic contrast control[J]. Journal of the Acoustical Society of America, 2009, 125 (4): 2091-2097. |
| [5] | SO H, CHOI J. Subband optimization and filtering technique for practical personal audio systems[C]. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019: 8494-8498. |
| [6] | LIAO X, CHEER J, ELLIOTT S, et al. Design of a loudspeaker array for personal audio in a car cabin[J]. Journal of the Audio Engineering Society, 2017, 65(3): 226-238. |
| [7] | VINDROLA L, MELON M, CHAMARD J C, et al. Use of the filtered-x least-mean-squares algorithm to adapt personal sound zones in a car cabin[J]. Journal of the Acoustical Society of America, 2021, 150(3): 1779-1793. |
| [8] | GÁLVEZ M F S, ELLIOTT S J, CHEER J. Personal audio loudspeaker array as a complementary TV sound system for the hard of hearing[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(9): 1824-1831. |
| [9] | HEUCHEL F M, CAVIEDES-NOZAL D, BRUNSKOG J, et al. Large-scale outdoor sound field control[J]. Journal of the Acoustical Society of America, 2020, 148(4): 2392-2402. |
| [10] | HEUCHEL F, CAVIEDES NOZAL D, AGERKVIST F T. Sound field control for reduction of noise from outdoor concerts[C]. Audio Engineering Society Convention 145. Audio Engineering Society, 2018. |
| [11] | CHOI J W, KIM Y H. Generation of an acoustically bright zone with an illuminated region using multiple sources[J]. Journal of the Acoustical Society of America, 2002, 111(4): 1695-1700. |
| [12] | SHIN M, LEE S Q, FAZI F M, et al. Maximization of acoustic energy difference between two spaces[J]. Journal of the Acoustical Society of America, 2010, 128(1): 121-131. |
| [13] | ELLIOTT S J, CHEER J, CHOI J W, et al. Robustness and regularization of personal audio systems[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(7): 2123-2133. |
| [14] | COLEMAN P, JACKSON P J B, OLIK M, et al. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array[J]. Journal of the Acoustical Society of America, 2014, 135(4): 1929-1940. |
| [15] | POLETTI M. An investigation of 2-D multizone surround sound systems[C]. Audio Engineering Society Convention 125. Audio Engineering Society, 2008. |
| [16] | OLIVIERI F, FAZI F M, FONTANA S, et al. Generation of private sound with a circular loudspeaker array and the weighted pressure matching method[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(8): 1579-1591. |
| [17] | RADMANESH N, BURNETT I S. Generation of isolated wideband sound fields using a combined two-stage lasso-ls algorithm[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 21(2): 378-387. |
| [18] | MOLÉS-CASES V, ELLIOTT S J, CHEER J, et al. Weighted pressure matching with windowed targets for personal sound zones[J]. Journal of the Acoustical Society of America, 2022, 151(1): 334-345. |
| [19] | CHANG J H, JACOBSEN F. Sound field control with a circular double-layer array of loudspeakers[J]. Journal of the Acoustical Society of America, 2012, 131(6): 4518-4525. |
| [20] | YANAGIDATE N, ELLIOTT S, TOI T. Car cabin personal audio: acoustic contrast with limited sound differences[C]. Audio Engineering Society, 2014. |
| [21] | LEE T, NIELSEN J K, JENSEN J R, et al. A unified approach to generating sound zones using variable span linear filters[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 491-495. |
| [22] | SHI L, LEE T, ZHANG L, et al. A fast reduced-rank sound zone control algorithm using the conjugate gradient method[C]. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 436-440. |
| [23] | CAI Y, WU M, LIU L, et al. Time-domain acoustic contrast control design with response differential constraint in personal audio systems[J]. Journal of the Acoustical Society of America, 2014, 135(6): 252-257. |
| [24] | GÁLVEZ M F S, ELLIOTT S J, CHEER J. Time domain optimization of filters used in a loudspeaker array for personal audio[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(11): 1869-1878. |
| [25] | FAZI F M. Sound field reproduction[D]. University of Southampton, 2010. |
| [26] | SIMÓN-GÁLVEZ M F, ELLIOTT S J, CHEER J. The effect of reverberation on personal audio devices[J]. Journal of the Acoustical Society of America, 2014, 135(5): 2654-2663. |
| [27] | ZHU Q, COLEMAN P, QIU X, et al. Robust personal audio geometry optimization in the SVD-based modal domain[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(3): 610-620. |
| [28] | OLSEN M, MØLLER M B. Sound zones: on the effect of ambient temperature variations in feed-forward systems[C]. Audio Engineering Society Convention 142. Audio Engineering Society, 2017. |
| [29] | AKETO T, SARUWATARI H, NAKAMURA S. Robust sound field reproduction against listener's movement utilizing image sensor[J]. Journal of Signal Processing, 2014, 18(4): 213-216. |
| [30] | TZIKAS D G, LIKAS A C, GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146. |
| [31] | BETLEHEM T, WITHERS C. Sound field reproduction with energy constraint on loudspeaker weights[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(8): 2388-2392. |
| [32] | ZHU Q, COLEMAN P, WU M, et al. Robust acoustic contrast control with reduced in-situ measurement by acoustic modeling[J]. Journal of the Audio Engineering Society, 2017, 65 (6): 460-473. |
| [33] | 涂臻,卢晶. 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382. |
| TU Z,LU J. Investigation on the robustness of acoustic focusing algorithm using smallscale loudspeaker array under scattering condition[J]. Journal of Nanjing University(Natural Sciences), 2016, 52(2): 382. | |
| [34] | 章康宁, 卢晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180-190. |
| ZHANG K, LU J. Research on robustness of directional small-size linear loudspeaker array[J]. Journal of Nanjing University(Natural Sciences), 2019, 55(2): 180-190. | |
| [35] | 张姮李子. 小尺度扬声器阵列算法研究[D]. 南京: 南京大学, 2013. |
| ZHANG H. Research on algorithms for small-scale loudspeaker arrays[D]. Nanjing: Nanjing University, 2013. | |
| [36] | ZHANG J, SHI L, CHRISTENSEN M G, et al. CGMM-based sound zone generation using robust pressure matching with ATF perturbation constraints[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 3331-3345. |
| [37] | GHOJOGH B, KARRAY F, CROWLEY M. Eigenvalue and generalized eigenvalue problems: tutorial[J]. arXiv preprint arXiv:, 2019. |
| [38] | 戴华. 矩阵论[M]. 北京: 科学出版社, 2001. |
| DAI Hua. Matrix theory[M]. Beijing: Science Press, 2001. | |
| [39] | BISHOP C M, NASRABADI N M. Pattern recognition and machine learning[M]. New York: Springer, 2006. |
| [40] | 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 5版. 北京: 高等教育出版社, 2020. |
| SHENG Z, XIE S, PAN C. Probability theory and mathematical statistics [M]. 5 th ed. Beijing: Higher Education Press, 2020. | |
| [41] | 廖祥凝. 车内分区域控制及加速声品质研究[D]. 北京: 清华大学, 2017. |
| LIAO X. Personal sound control in a car cabin and research on accelerating sound quality[D]. Beijing: Tsinghua University, 2017. | |
| [42] | NELSON P A, CURTIS A R D, ELLIOTT S J, et al. The minimum power output of free field point sources and the active control of sound[J]. Journal of Sound and Vibration, 1987, 116(3): 397-414. |
| [1] | Qilin Wu,Yuming Lin,Zhengrong Cui,Xiaomin Zhao. Formation Containment Control for Multiple Unmanned Ground Vehicles Based on Hierarchical Constraints [J]. Automotive Engineering, 2023, 45(8): 1333-1342. |
| [2] | Xinrong Zhang,Yuhang Tan,Yifan Jia,Jin Huang,Quanning Xu. Robust Control of Path Tracking for Four-Wheel Independent Drive Electric Vehicles [J]. Automotive Engineering, 2023, 45(2): 253-262. |
| [3] | Yue Zhao,Jibin Hu,Wei Wu,Chao Wei. Robust Stability Control and Its Verification Test for All-Wheel Diagonal Steering of Unmanned Ground Vehicles [J]. Automotive Engineering, 2022, 44(8): 1126-1135. |
| [4] | Jiaxu Zhang,Chen Wang,Jian Zhao. Path Planning and Tracking Control for Vehicle Overtaking on Curve Based on Modified Artificial Potential Field Method [J]. Automotive Engineering, 2021, 43(4): 546-552. |
| [5] | Zhao Zhiguo, Fan Jiaqi, Jiang Lanxing, Tang Xuhui, Fu Jing. Engine Start-up H∞ Robust Optimal Control of the Compound Power-Split System [J]. Automotive Engineering, 2020, 42(4): 417-424. |
| [6] | Yang Zeyu, Huang Jin, Hu Zhanyi, Xie Guotao, Zhong Zhihua. Distributed Robust Control of Vehicle Platoon for Strict Collision Avoidance [J]. Automotive Engineering, 2020, 42(10): 1312-1319. |
| [7] | Ma Ruihai, Wang Lifang, Zhang Junzhi, He Chengkun. Dynamic Slip Ratio Emulationon of Dynamometer Based on Adaptive Robust Control [J]. Automotive Engineering, 2020, 42(10): 1397-1403. |
| [8] | Zhang Liangxiu, Wu Guangqiang, Guo Xiaoxiao. Modeling and Hierarchical Control of Vehicle ACC System [J]. , 2018, 40(5): 547-553. |
|
||