Automotive Engineering ›› 2023, Vol. 45 ›› Issue (3): 477-488.doi: 10.19562/j.chinasae.qcgc.2023.03.015
Special Issue: 车身设计&轻量化&安全专题2023年
Previous Articles Next Articles
Liandong Wang1,2,Xiliang Song1,2(),Yingying Li1,2,Yaping Cui1,2,Ting Wu1,2
Received:
2022-09-20
Revised:
2022-11-06
Online:
2023-03-25
Published:
2023-03-23
Contact:
Xiliang Song
E-mail:shgsxl@163.com
Liandong Wang,Xiliang Song,Yingying Li,Yaping Cui,Ting Wu. Design and Performance Analysis Under Torsion Condition of Bulging Forming Axle Housing of Heavy-Duty Truck[J].Automotive Engineering, 2023, 45(3): 477-488.
"
典型点 | ST1 | ST2 | ST3 | ST4 | XT1 | XT2 | XT3 | XT4 | GS | GL |
---|---|---|---|---|---|---|---|---|---|---|
X坐标/mm | -93 | -93 | 177 | 177 | -283.5 | -283.5 | 363.5 | 363.5 | -283.5 | 363.5 |
Y坐标/mm | -34 | 46 | -34 | 46 | -72.5 | 72.5 | -68.5 | 68.5 | 0 | 0 |
Z坐标/mm | 235 | 235 | 183 | 183 | -25 | -25 | -25 | -25 | 111 | 80 |
流动应力/MPa | 471.47 | 501.42 | 474.17 | 471.99 | 492.58 | 491.21 | 529.37 | 517.88 | 530.88 | 544.52 |
强化系数 | 1.37 | 1.45 | 1.37 | 1.37 | 1.43 | 1.42 | 1.53 | 1.50 | 1.54 | 1.58 |
残余应力/MPa | 144.20 | 183.55 | 144.90 | 150.22 | 185.01 | 213.89 | 185.16 | 206.03 | 133.26 | 141.50 |
"
区域 | 测量点 | 切向应变ε0° | 法向应变ε90° | ε45° | ||
---|---|---|---|---|---|---|
试验 | 模拟 | 试验 | 模拟 | 试验 | ||
后盖过渡圆弧面 | C0 | 60 | 56 | 57 | 49 | -41 |
C45 | 205 | 185 | 135 | 110 | 178 | |
C90 | -16 | -15 | -162 | -174 | -23 | |
C135 | 149 | 149 | -147 | -117 | -182 | |
上推力座边缘点 | ST1 | -189 | -214 | -248 | -231 | -207 |
ST2 | 317 | 298 | 262 | 249 | 327 | |
ST3 | -104 | -97 | -292 | -256 | -243 | |
ST4 | 64 | 75 | 212 | 197 | 160 | |
下推力座边缘点 | XT1 | 4 | 4 | -40 | -35 | -187 |
XT2 | -10 | -9 | 44 | 42 | 198 | |
XT3 | 6 | 6 | 82 | 83 | 218 | |
XT4 | -14 | -12 | -76 | -74 | -192 | |
过渡区 | GS | 47 | 50 | -77 | -72 | 204 |
GL | 76 | 73 | -65 | -62 | -171 |
1 | 刘惟信. 汽车车桥设计[M]. 北京: 清华大学出版社, 2004: 330-349. |
LIU W X. Automobile axle design [M]. Beijing: Tsinghua University Press, 2004: 330-349. | |
2 | 崔晓鹏, 刘海峰, 金玉刚. 中重型商用汽车桥壳发展现状及趋势[J]. 铸造, 2008, 57(6): 537-540. |
CUI X P, LIU H F, JIN Y G. Present status and development trend of rear axle housing for medium and heavy commercial vehicle[J]. Foundry, 2008, 57(6): 537-540. | |
3 | 徐明琦, 王学双, 李易航, 等. 商用车车桥疲劳断裂失效原因分析[J]. 汽车工艺与材料, 2020 (12): 29-31. |
XU M Q, WANG X S, LI Y H, et al. Fatigue failure cause analysis of commercial vehicle axle[J]. Automobile Technology and Material, 2020(12): 29-31. | |
4 | 于大威, 乔景忠, 高海燕, 等. 双驱动重卡用铸钢桥壳的工艺设计与改进[J]. 铸造, 2020, 69(8): 883-887. |
YU D W, QIAO J Z, GAO H Y, et al. Design and improvement of casting process of cast steel bridge shell for double drive heavy truck[J]. Foundry, 2020, 69(8): 883-887. | |
5 | KUMAR G, KUMARASWAMIDHAS L A. Design optimization focused on failures during developmental testing of the fabricated rear-axle housing[J]. Engineering Failure Analysis, 2021,120: 1-9. |
6 | AJAY G, ABHIJIT N K. Simulation and correlation of commercial axle banjo housing fracture under braking fatigue test[C]. Proceedings of the FISITA 2012 World Automotive Congress, 2012, 8: 1287-1299. |
7 | 王海龙, 刘晓龙, 张艳娥, 等. 重型桥壳开发设计的若干考虑[J]. 汽车技术, 2020(4): 53-55. |
WANG H L, LIU X L, ZHANG Y E, et al. Some considerations on development and design of heavy duty bridge shell[J]. Auto- mobile Technology, 2020(4): 53-55. | |
8 | 林荣会, 宋晓飞. 轻量化冲焊桥壳研制[J]. 机械设计与制造, 2017(11): 242-245. |
LIN R H, SONG X F. Development on the lightweight punching-welded axle housing[J]. Machinery Design & Manufacture, 2017(11): 242-245. | |
9 | 郭志田, 邓娟, 赵永健. 轻量化冲焊桥壳优化设计及试验研究[J]. 农业装备与车辆工程, 2017, 55(10): 75-79. |
GUO Z T, DENG J, ZHAO Y J. Optimum design and experimental study of lightweight welding axle housing[J]. Agricultural Equipment and Vehicle Engineering, 2017, 55(10): 75-79. | |
10 | 纪建奕, 戴永谦, 王富强,等. 重卡驱动桥壳一次冲压热成型仿真研究[J]. 节能技术, 2018, 36(3): 219-222. |
JI J Y, DAI Y Q, WANG F Q, et al. Simulation study on hot stamping forming of the drive axle house of heavy truck[J]. Energy Conservation Technology, 2018, 36(03): 219-222. | |
11 | 于燕, 宋丽丽, 杨海瑞, 等. 中重型卡车桥壳用390Q高强度钢的焊接性能[J]. 机械工程材料, 2008, 32(8): 53-55. |
YU Y, SONG L L, YANG H R, et al. Welding properties of high strength steel 390Q for axle housing[J]. Materials for Mechanical Engineering, 2008, 32(8): 53-55. | |
12 | WANG X D, WANG L D, JIN M, et al. Mechanism analysis and engineering experiment of multi-directional pressing-forming complex large-size automobile axle housing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1-2):1295-1314. |
13 | LIU H, WANG L D, WANG X D, et al. Analysis and control of cracking and wrinkling at the end of seamless steel tube with multi-pass large deformation diameter-reducing[J]. Metals, 2021, 11(9) 1438. |
14 | 王连东, 徐永生, 陈旭静,等. 小型桥壳液压胀形初始变形条件分析及成形试验[J]. 中国机械工程, 2016, 27(3): 398-402. |
WANG L D, XU Y S, CHEN X J, et al. Analyses of initial deformation conditions for light hydro forming axle housing and forming experiments[J]. China Mechanical Engineering, 2016, 27(3): 398-402. | |
15 | 王晓迪, 王连东, 金淼,等. 汽车桥壳多向充液压制小圆弧成形分析及设计[J]. 吉林大学学报(工学版), 2022, 52(5): 998-1008. |
WANG X D, WANG L D, JIN M, et al. Forming analysis and design for small arc in multi direction hydro⁃pressing of automobile axle housing[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5): 998-1008. | |
16 | 王连东, 丁明慧, 肖超. 胀压成形汽车桥壳性能的有限元模拟与试验[J]. 汽车工程, 2016, 38(1): 127-132. |
WANG L D, DING M H, XIAO C. The finite element simulation and test on the performance of bulging-pressing formed vehicle axle housing[J]. Automotive Engineering, 2016, 38(1): 127-132. |
[1] | Bowen Wang,Feng Luo,Zitong Wang. Design of Automotive Time-Sensitive Network Communication Simulation System Based on OMNeT++ [J]. Automotive Engineering, 2023, 45(6): 954-964. |
[2] | Tianchan Yu,Yuan Wang,Wenxing Shi,Chenjiyu Liang,Xianting Li,Junping Cen,Min Luo. Performance Analysis of a Thermal Management System for Electric Vehicles Based on the Three-Fluid Heat Exchanger [J]. Automotive Engineering, 2023, 45(11): 2001-2013. |
[3] | Peilong Shi,Xuan Zhao,Zitong Chen,Qiang Yu. Study on Active Control of Exhaust Brake System for Heavy-duty Truck Based on Road Driving Condition Recognition [J]. Automotive Engineering, 2023, 45(1): 104-111. |
|