Automotive Engineering ›› 2024, Vol. 46 ›› Issue (2): 320-328.doi: 10.19562/j.chinasae.qcgc.2024.02.014
Previous Articles Next Articles
Lin Zhang1,2,3,Hua Meng1,Yu Feng3,Xiaolong Zhao3,Chao Wei4(),Yunbing Yan1
Received:
2023-07-06
Revised:
2023-08-14
Online:
2024-02-25
Published:
2024-02-23
Contact:
Chao Wei
E-mail:BIT_weichao@163.com
Lin Zhang,Hua Meng,Yu Feng,Xiaolong Zhao,Chao Wei,Yunbing Yan. Optimization Design of Micro-texture on the Surface of Friction Plate in High-Speed Wet Clutch[J].Automotive Engineering, 2024, 46(2): 320-328.
"
项目 | 参数名称 | 数值 |
---|---|---|
摩擦副几何尺寸 | 内半径rin/mm | 173 |
外半径rout/mm | 207 | |
转动惯量Ix, Iy /(kg | 0.026 1 | |
质量Mp/kg | 1.43 | |
工况参数 | 摩擦片转速n1 /(r·min-1) | 5 000 |
摩擦片线速度v1 /(m·s-1) | 108.4 | |
平均间隙hn /mm | 0.5 | |
每副平均供流量Qa /(L·min-1) | 1.8 | |
温度T /℃ | 40 | |
油液黏度ul /(Pa·s) | 0.091 | |
油液密度 ρl /(Pa·s) | 866.3 | |
设计参数约束条件 | 微织构数量Ng | [ |
微织构深度hg /mm | [0.2, 0.5] | |
微织构周向占比rc | [0.1, 0.3] | |
微织构径向占比rra | [0.6, 0.8] | |
周向角度偏移量φi / (°) | [-0.1 0.1] | |
有效摩擦面积系数ψs | [0.8, 0.9] |
"
参数 | 最优解 | 随机解1 | 随机解2 | 随机解3 | 随机解4 | 随机解5 |
---|---|---|---|---|---|---|
Ng | 30 | 18 | 30 | 16 | 24 | 9 |
hg /mm | 0.50 | 0.49 | 0.36 | 0.23 | 0.27 | 0.48 |
rc | 0.12 | 0.25 | 0.21 | 0.14 | 0.22 | 0.17 |
rra | 0.72 | 0.60 | 0.68 | 0.65 | 0.60 | 0.70 |
φ1 /(°) | 0.044 95 | 0.037 06 | 0.027 20 | -0.033 23 | 0.012 98 | 0.002 878 |
φ2 /(°) | 0.031 82 | 0.014 00 | -0.002 08 | -0.042 39 | -0.023 91 | -0.025 45 |
φ3 /(°) | 0.014 27 | -0.044 14 | -0.041 28 | -0.037 54 | -0.011 84 | -0.040 73 |
φ4 /(°) | -0.020 28 | -0.033 60 | -0.038 38 | 0.043 77 | 0.032 02 | -0.034 73 |
Td /(N·m) | 4.65 | 10.95 | 16.96 | 11.34 | 15.73 | 12.74 |
1 | NAUNHEIMER H, BERTSCHE B, RYBORZ J, et al. Layout and design of multi-plate clutches[J]. Automotive Transmissions: Fundamentals, Selection, Design and Application, 2011: 363-365. |
2 | GROPPER D, WANG L, HARVEY T J, et al. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings[J]. Tribology International, 2016: 509-529. |
3 | TAKAGI Y, NAKATA H, OKANO Y, et al. Effect of two-phase flow on drag torque in a wet clutch[J]. Journal of Advanced Research in Physics, 2011, 2(2). |
4 | HU J, PENG Z, WEI C. Experimental research on drag torque for single-plate wet clutch[J]. Journal of Tribology-Transactions of the ASME, 2012,134(1): 014502-014502-6. |
5 | NEUPERT T, BENKE E, BARTEL D. Parameter study on the influence of a radial groove design on the drag torque of wet clutch discs in comparison with analytical models[J]. Tribology International, 2018, 119:809-821. |
6 | 项昌乐, 章颖莹, 刘辉. 高转速差车用湿式离合器带排转矩特性研究[J]. 机械工程学报, 2013, 49(20):71-77. |
XIANG C L, ZHANG Y Y, LIU H. Research on drag torque of high relative speed open wet clutch of vehicle[J]. Journal of Mechanical Engineering, 2013, 49(20):71-77. | |
7 | 刘继凯, 马彪, 李和言.摩擦片表面沟槽对离合器带排转矩的影响[J].华中科技大学学报(自然科学版),2015,43(2):35-39. |
LIU J K, MA B, LI H Y. Influences of surface grooves on friction plate on drag torque of wet clutch[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015,43(2):35-39. | |
8 | ZHANG L, WEI C, HU J. Model for the prediction of drag torque characteristics in wet clutch with radial grooves[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(12):3043-3056. |
9 | RYU J S. Effect of angle and density of grooves between friction plate segments on drag torque in wet clutch of automatic transmission[J]. Journal of KSTLE, 2014, 30(2): 71-76. |
10 | RYU J S. Effects of friction plate area and clearance on the drag torque in a wet clutch for an automatic transmission[J]. Journal of KSTLE, 2014, 30(6): 337-342. |
11 | WU W, XIONG Z, HU J, et al. Application of CFD to model oil-air flow in a grooved two-disc system[J]. International Journal of Heat and Mass Transfer, 2015:293-301. |
12 | 熊钊, 苑士华, 吴维, 等.湿式离合器对偶片间油气两相流动的数值模拟[J].机械工程学报,2016,52(16):117-123. |
XIONG Z, YUAN S H, WU W, et al. Numerical investigation of the air-oil two-phase flow inside a wet clutch[J]. Journal of Mechanical Engineering, 2016,52(16):117-123. | |
13 | MAHMUD S, PAHLOVY S, KUBOTA M, et al. Multi-phase simulation for studying the effect of different groove profiles on the drag torque characteristics of transmission wet clutch[C]. SAE Paper 2016-01-1144. |
14 | ASAI K, ITO T. Effect of facing groove design on drag torque of automatic transmission wet clutches[C]. SAE Paper 2018-01-0400. |
15 | OERLEKE C. Einflußgrößen auf die schleppmomente schnellaufender lamellenkupplungen in automatgetrieben[D]. Universität der Bundeswehr Hamburg, 2000. |
16 | PAHLOVY S, MAHMUD S, KUBOTA M, et al. Development of an analytical model for prediction of drag torque characteristics of disengaged wet clutches in high speed region[C]. SAE Paper 2017-01-1132. |
17 | 师路骐, 马彪, 李和言, 等.全程转速下浮动支撑湿式离合器带排转矩计算模型与验证[J].兵工学报,2018,39(9):1665-1674. |
SHI L Q, MA B, LI H Y, et al. Modeling and experimental validation of drag torque of wet multi-disk clutch with spline connected restriction in full speed range[J]. Acta Armamentarii, 2018,39(9):1665-1674. | |
18 | HOU S, HU J, PENG Z. Experimental investigation on unstable vibration characteristics of plates and drag torque in open multiplate wet clutch at high circumferential speed[J]. Journal of Fluids Engineering-Transactions of the ASME, 2017, 139(11). |
19 | ZHANG M, LIU Y, LIU T, et al. The drag characteristics prediction of multi-plate frictional wet clutches in vehicle transmissions[J]. Journal of Mechanical Science and Technology, 2023, 37(7):3249-3259. |
20 | HU J, HOU S, WEI C. Drag torque modeling at high circumferential speed in open wet clutches considering plate wobble and mechanical contact[J]. Tribology International, 2018: 102-116. |
21 | ZHANG L, WEI C, HU J, et al. Influences of lubrication flow rates on critical speed of rub-impact at high circumferential velocities in no-load multi-plate wet clutch[J]. Tribology International, 2019, 140:105847. |
22 | 张琳, 魏超, 胡纪滨. 高速多片湿式离合器低带排转矩参数优化设计[J]. 汽车工程, 2020, 42(8):1074-1081. |
ZHANG L, WEI C, HU J B. Optimization design of low drag torque parameters of high-speed multi-plate wet clutch[J]. Automotive Engineering, 2020, 42(8):1074-1081. | |
23 | 赵一民.车用微槽型旋转密封环润滑状态预测与动态特性研究[D].北京:北京理工大学,2016. |
ZHAO Y M. Study on lubricating condition prediction and dynamic characteristics of grooved rotary seal ring for vehicle [D]. Beijing: Beijing Institute of Technology,2016. | |
24 | JIN R, CHEN W, SUDJIANTO A, et al. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134(1): 268-287. |
25 | KAVURI S N, VENKATASUBRAMANIAN V. Using fuzzy clustering with ellipsoidal units in neural networks for robust fault classification[J]. Computers & Chemical Engineering, 1993, 17(8): 765-784. |
26 | MITRA A C, DESAI G J, PATWARDHAN S R, et al. Optimization of passive vehicle suspension system by genetic algorithm[J]. Procedia Engineering, 2016, 144(144): 1158-1166. |
[1] | Lin Zhang,Yuansheng Zhang,Chao Wei,Yunbing Yan. Analysis of Critical Rub-Impact Speed and Drag Torque of Unconstrained Friction Pair in Wet Clutch [J]. Automotive Engineering, 2023, 45(6): 1073-1080. |
[2] | Xuefeng Jia,Qizhang Feng,Xiandong Liu,Yingchun Shan. Research on Accurate Modeling and Simulation Method of Dynamic Characteristics for Automotive Tire Blow-out Process [J]. Automotive Engineering, 2023, 45(5): 854-864. |
[3] | Xianguang Gu,Menglin Gao,Xiaole Wang,Yuezhu Huang. Reliability Optimization Design of Occupant Restraint System Based on GWO⁃KRG Surrogate Model [J]. Automotive Engineering, 2021, 43(6): 870-876. |
[4] | Liang Yu,Biao Ma,Changsong Zheng,Yujian Liu,Fuhua Wei,Renqi Yang. Influence of Groove Area on the Clutch Friction⁃Wear Characteristics at Different Lubricating Oil Temperatures [J]. Automotive Engineering, 2021, 43(10): 1536-1542. |
[5] | Fengling Gao,Yuan Wu,Xiaobing Bu,Nan Zhan,Xiaokai Chen. Optimization Design of Tire for Enhancing Vehicle Road Noise Performance [J]. Automotive Engineering, 2021, 43(1): 145-151. |
[6] | Zhang Lin, Wei Chao, Hu Jibin. Optimization Design of Low Drag Torque Parameters of High-Speed Multi-Plate Wet Clutch [J]. Automotive Engineering, 2020, 42(8): 1074-1081. |
[7] | Zhang Haiyang, Lü Xiaojiang, Zhou Dayong, Xia Liang, Gu Xianguang. Optimization Design of Vehicle Structural Crashworthiness with Consideration of Robustness [J]. Automotive Engineering, 2020, 42(2): 222-227. |
[8] | Zhou Xiaojun, Wu Penghui, Yang Chenlong, Xu Jin, Shang Xiaobo & Wang Zhaoshuai. Simulation and Experimental Study on the Drag TorqueCharacteristics of Wet Clutches in High Speed Condition [J]. Automotive Engineering, 2019, 41(9): 1056-1064. |
[9] | Wang Zheyang, Wang Zhenhu, Zhang Songbo, Li Luoxing. Application of CVDA Sequential Sampling Method to Lightweight Design of Aluminum Alloy Frame [J]. Automotive Engineering, 2019, 41(12): 1466-1472. |
|