1 |
世界卫生组织. 道路安全全球现状报告2018 [EB/OL]. .
|
|
World Healthy Organization. Global status report on road safety 2018 [EB/OL]. .
|
2 |
NHTSA. Pedestrian safety [EB/OL]. .
|
3 |
GSUL M, 胡予红, 周旋, 等. 道路交通运输安全发展报告(2017)[J]. 中国应急管理, 2018(2): 48-58.
|
|
GSUL M, HU Y, ZHOU X, et al. Road traffic and transport safety development report (2017)[J]. Chinese Emergency Management, 2018(2): 48-58.
|
4 |
RAJAMANI R. Vehicle dynamics and control[M]. Springer⁃Verlag, New York, USA. 2006.
|
5 |
LIN C F, ULSOY A G. Vehicle dynamics and externaldisturbance estimation for future vehicle path prediction[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3): 508-518.
|
6 |
BRAND M, OLIVER N, PENTLAND A. Coupled hidden Markov models for complex action recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1997:994-999.
|
7 |
娄新雨,王海,蔡英凤,等. 采用64线激光雷达的实时道路障碍物检测与分类算法的研究[J].汽车工程,2019,41(8):779-784.
|
|
LOU X, WANG H, CAI Y, et al. A research on an algorithm for real⁃time detection and classification of road obstacle by using 64-line lidar [J]. Automotive Engineering, 2019, 41(8): 779-784.
|
8 |
SONG X, ZHAN W, CHE X, et al. Scale⁃aware attention⁃based PillarsNet (SAPN) based 3D object detection for point cloud[J]. Mathematical Problems in Engineering, 2020, 2020.
|
9 |
种衍文,匡湖林,李清泉,等. 一种基于多特征和机器学习的分级行人检测方法[J]. 自动化学报, 2012, 38(3):375-381.
|
|
CHONG Y, KUANG H, LI Q,et al. Two⁃stage pedestrian detection based on multiple features and machine learning [J]. Acta Automatica Sinica, 2012, 38(3): 375-381.
|
10 |
TIAN Y, LUO P, WANG X, et al. Deep learning strong parts for pedestrian detection[C].Proceedings of the IEEE International Conference on Computer Vision.2015: 1904-1912.
|
11 |
MAO J, XIAO T, JIANG Y, et al. What can help pedestrian detection?[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:3127-3136.
|
12 |
刘国辉, 张伟伟, 吴训成, 等. 基于VGG⁃M网络模型的前方车辆跟踪[J]. 汽车工程, 2019, 41(1):61-67.
|
|
LIU G, ZHANG W, WU X,et al. Front vehicle tracking based on VGG⁃M network model [J]. Automotive Engineering, 2019, 41(1): 61-67.
|
13 |
KALANTAROV S, RIEMER R, ORON⁃GILAD T. Pedestrians’ road crossing decisions and body parts’ movements[J]. Transportation research part F: Traffic Psychology and Behaviour, 2018, 53: 155-171.
|
14 |
KELLER C G, GAVRILA D M. Will the pedestrian cross?a study on pedestrian path prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,15(2): 494-506.
|
15 |
GU Y, HASHIMOTO Y, HSU L T, et al. Human⁃like motion planning model for driving in signalized intersections[J]. IATSS Research, 2017, 41(3): 129-139.
|
16 |
LEE N, CHOI W, VERNAZA P, et al. Desire: distant future prediction in dynamic scenes with interacting agents[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 336-345.
|
17 |
SHEN M, HABIBI G, HOW J P. Transferable pedestrian motion prediction models at intersections[C].2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 4547-4553.
|
18 |
CAO Z, SIMON T, WEI S E, et al. Realtime multi⁃person 2D pose estimation using part affinity fields[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7291-7299.
|
19 |
FANG Z, LÓPEZ A M. Is the pedestrian going to cross? answering by 2D pose estimation[C].2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 1271-1276.
|
20 |
QUINTERO R, PARRA I, LORENZO J, et al. Pedestrian intention recognition by means of a hidden markov model and body language[C].2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC). IEEE, 2017: 1-7.
|
21 |
KINGMA D P, WELLING M. Stochastic gradient VB and the variational auto⁃encoder[C].Second International Conference on Learning Representations, ICLR. 2014, 19.
|
22 |
NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C].Proceedings of the IEEE International Conference on Computer Vision.2015: 1520-1528.
|
23 |
KOHL S, ROMERA⁃PAREDES B, MEYER C, et al. A probabilistic U⁃net for segmentation of ambiguous images[C].Advances in Neural Information Processing Systems, 2018: 6965-6975.
|
24 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder⁃decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|
25 |
PASZKE A, CHAURASIA A, KIM S, et al. Enet: a deepneural network architecture for real⁃time semantic segmentation[J]. arXiv Preprint arXiv:, 2016.
|
26 |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequen⁃cemodeling[C].NIPS 2014 Workshop on Deep Learning,December2014. 2014.
|
27 |
MEDSKER L R, JAIN L C. Recurrent neural networks[J]. Design and Applications, 2001, 5.
|
28 |
HOCHREITER S, SCHMIDHUBER J. Long short⁃term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
29 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv Preprint arXiv:, 2020.
|
30 |
YAMAGUCHI K, KATO T, NINOMIYA Y.Vehicle egomotion estimation and moving object detection using a monocular camera[C]. 18th International Conference on Pattern Recognition (ICPR’06), vol. 4. IEEE, 2006:610-613.
|
31 |
RASOULI A, KOTSERUBA I, TSOTSOS J K. Agreeing to cross: how drivers and pedestrians communicate[C].2017 IEEE Intelligent Vehicles Symposium (IV). IEEE,2017: 264-269.
|
32 |
RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: a large⁃scale dataset and models for pedestrian intention estimation and trajectory prediction[C].Proceedings of the IEEE International Conference on Computer Vision. 2019: 6262-6271.
|
33 |
RASOULI A, KOTSERUBA I, TSOTSOS J K.Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 206-213.
|
34 |
KATAOKA H,SATOH Y, AOKI Y, et al.Temporal and fifine⁃grained pedestrian action recognition on driving recorder database[J]. Sensors, 2018,18(2): 627.
|
35 |
CADENA P R G, YANG M, QIAN Y, et al.Pedestrian graph: pedestrian crossing prediction based on 2D pose estimation and graph convolutional networks[C]. International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2019: 2000-2005.
|
36 |
LIU B, ADELI E, CAO Z, et al.Spatiotemporal relationship reasoning for pedestrian intent prediction[C].2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 3485-3492.
|