汽车工程 ›› 2021, Vol. 43 ›› Issue (11): 1673-1682.doi: 10.19562/j.chinasae.qcgc.2021.11.013

• • 上一篇    下一篇

无人车辆底盘集成动力学系统解耦控制研究

张雨甜,李斐然,田汉青,胡纪滨,魏超,吴维()   

  1. 北京理工大学机械与车辆学院,北京 100081
  • 收稿日期:2021-06-21 修回日期:2021-08-19 出版日期:2021-11-25 发布日期:2021-11-22
  • 通讯作者: 吴维 E-mail:wuweijing@bit.edu.cn
  • 基金资助:
    国家自然科学基金(U1764257)

Research on Decoupling Control of Integrated Dynamics System of Unmanned Vehicle Chassis

Yutian Zhang,Feiran Li,Hanqing Tian,Jibin Hu,Chao Wei,Wei Wu()   

  1. School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081
  • Received:2021-06-21 Revised:2021-08-19 Online:2021-11-25 Published:2021-11-22
  • Contact: Wei Wu E-mail:wuweijing@bit.edu.cn

摘要:

面向多轮分布式驱动全轮转向无人车辆,本文针对性提出并验证了一种底盘动力学集成控制系统的解耦控制器,旨在通过解耦控制来实现灵活、快速、精确的无人平台动力学性能进一步提升。首先建立了可准确反映车辆纵向-侧向-横摆-侧倾运动的车辆耦合动力学模型,结合非参数统计方法对该动力学系统的输入输出耦合特性进行了定量分析;随后,基于神经网络逆系统原理构建了解耦线性化的车辆动力学系统与解耦复合控制器,测试并成功验证了系统的解耦响应,并对所提出的控制器进行了试验验证。结果表明,耦合动力学系统中各自由度控制子通道间因动力学耦合关系带来的干扰和影响得到了有效削弱,从而可实现对各子通道相对独立的控制效果,为分布式驱动无人车辆在轨迹跟踪运动过程中的高效、精准、稳定的综合动力学表现奠定了重要的平台技术和物理基础。

关键词: 分布式独立驱动, 轮式无人车辆, 底盘集成控制, 神经网络逆解耦控制

Abstract:

This paper proposes and verifies a decoupling controller of chassis dynamics integrated control system for the multi wheel distributed drive all-wheel steering unmanned vehicle, in order to further improve the dynamic performance of flexible, fast and accurate unmanned platform through decoupling control. Firstly, a vehicle coupling dynamic model is established which can accurately reflect the longitudinal, lateral and yaw motion of the vehicle, and the input-output coupling characteristics of the dynamic system are quantitatively analyzed combined with the nonparametric statistical method. Then, based on the principle of Neural Network Inverse (NNI) system, the vehicle dynamic system with decoupling linearization and decoupling composite controller are constructed. The decoupling response of the system is tested and verified successfully, and the proposed controller is verified by experiments. The results show that the interference caused by the dynamic coupling relationship between the control sub-channels of each degree of freedom of the coupling dynamic system is effectively reduced, so that relatively independent control of each sub-channel can be realized, which lays an important platform and physical foundation for efficient, accurate and stable comprehensive dynamic performance in the trajectory tracking process of distributed drive unmanned vehicle.

Key words: distributed independent drive, wheeled unmanned vehicle, chassis integrated control, neural network inverse decoupling control