1 |
NCSA. Distracted driving 2019[EB/OL]. https://crashstats.nhtsa.dot.gov/#!/#%2F 2021.
|
2 |
钟铭恩, 吴平东, 彭军强, 等. 基于脑电信号的驾驶员情绪状态识别研究[J]. 中国安全科学学报, 2011(9).
|
|
ZHONG M E, WU P D, PENG J Q, et al. Research on recognition of driver's emotional state based on EEG signal[J]. China Safety Science Journal, 2011(9).
|
3 |
陈骥驰, 王宏, 王翘秀, 等. 基于脑电信号的疲劳驾驶状态研究[J]. 汽车工程, 2018, 40(5): 515-520.
|
|
CHEN J C,WANG H,WANG Q X,et al. A study on drowsy driving state based on EEG signals[J]. Automotive Engineering, 2018,40(5):515-520.
|
4 |
王琼, 王欢, 赵春霞, 等. 基于眼睛状态识别的驾驶员疲劳监测[J]. 南京理工大学学报(自然科学版), 2010(4).
|
5 |
MOSLEMI N, AZMI R, SORYANI M. Driver distraction recognition using 3D convolutional neural networks[C].2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE, 2019: 145-151.
|
6 |
LI P, LU M, ZHANG Z, et al. A novel spatial-temporal graph for skeleton-based driver action recognition[C].2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 3243-3248.
|
7 |
施冬梅,肖锋. 基于改进长短时记忆网络的驾驶行为检测方法研究[J]. 汽车工程, 2021, 43(8): 1203-1209.
|
|
SHI D M, XIAO F. Study on driving behavior detection method based on improved long and short term memory network[J]. Automotive Engineering, 2021, 43(8): 1203-1209.
|
8 |
LU M, HU Y, LU X. Driver action recognition using deformable and dilated faster R-CNN with optimized region proposals[J]. Applied Intelligence, 2020, 50(4): 1100-1111.
|
9 |
AI Y, XIA J, SHE K, et al. Double attention convolutional neural network for driver action recognition[C].2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). IEEE, 2019: 1515-1519.
|
10 |
HUANG C, WANG X, CAO J, et al. HCF: a hybrid CNN framework for behavior detection of distracted drivers[J]. IEEE Access, 2020, 8: 109335-109349.
|
11 |
ZHANG N, DONAHUE J, GIRSHICK R B, et al. Part-based R-CNNs for fine-grained category detection[J]. European Conference on Computer Vision (ECCV), 2014: 834-849.
|
12 |
LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear cnn models for fine-grained visual recognition[C].Proceedings of the IEEE International Conference on Computer Vision. 2015: 1449-1457.
|
13 |
ZHANG X, ZHOU F, LIN Y, et al. Embedding label structures for fine-grained feature representation[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1114-1123.
|
14 |
SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: a unified embedding for face recognition and clustering[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 815-823.
|
15 |
SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[J]. arXiv preprint arXiv:, 2017.
|
16 |
ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2921-2929.
|
17 |
StateFarm distracted driver detection[DB/OL]. https://www.kaggle.com/c/state-farm-distracted-driver-detection 2015.
|
18 |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
|
19 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
20 |
CHOLLET F. XCEPTION: deep learning with depthwise separable convolutions[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
|