汽车工程 ›› 2022, Vol. 44 ›› Issue (4): 567-582.doi: 10.19562/j.chinasae.qcgc.2022.04.012

所属专题: 新能源汽车技术-动力电池&燃料电池2022年

• • 上一篇    下一篇

碱性水电解制氢系统建模综述及展望

李洋洋1,邓欣涛1,古俊杰1,张涛2,郭斌3,杨福源1(),欧阳明高1()   

  1. 1.清华大学,汽车安全与节能国家重点实验室,北京  100084
    2.北京航空航天大学交通科学与工程学院,北京  100191
    3.郑州大学机械与动力工程学院,郑州  450001
  • 收稿日期:2021-10-27 修回日期:2021-11-26 出版日期:2022-04-25 发布日期:2022-04-22
  • 通讯作者: 杨福源,欧阳明高 E-mail:fyyang@tsinghua.edu.cn;ouymg@tsinghua.edu.cn
  • 基金资助:
    中国博士后科学基金(2021M691733)

Comprehensive Review and Prospect of the Modeling of Alkaline Water Electrolysis System for Hydrogen Production

Yangyang Li1,Xintao Deng1,Junjie Gu1,Tao Zhang2,Bin Guo3,Fuyuan Yang1(),Minggao Ouyang1()   

  1. 1.Tsinghua University,State Key Laboratory of Automotive Safety and Energy,Beijing  100084
    2.School of Transportation Science and Engineering,Beihang University,Beijing  100191
    3.School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou  450001
  • Received:2021-10-27 Revised:2021-11-26 Online:2022-04-25 Published:2022-04-22
  • Contact: Fuyuan Yang,Minggao Ouyang E-mail:fyyang@tsinghua.edu.cn;ouymg@tsinghua.edu.cn

摘要:

本文中以建模为重点对碱性水电解制氢系统的现状与展望进行综述。首先,对水电解制氢多种方式进行了对比分析,并重点阐述了碱性水电解制氢系统现状:碱性水电解制氢技术存在投资成本低、寿命长、规模大的特点,是现阶段实现“碳达峰”目标的重要手段。接着,在碱性水电解制氢系统建模方面定量地深入分析了电解槽能耗、气体纯度和温度与系统控制的影响机制。本研究为碱性水电解制氢技术的发展提供理论和技术支撑。

关键词: 碱性水电解制氢, 动态响应, 系统建模与控制, 气体纯度

Abstract:

The status quo and prospect of the alkaline water electrolysis system for hydrogen production are summed up in this paper with the focus on its modeling. Firstly, various ways of water electrolysis for hydrogen production are comparatively analyzed with the status quo of alkaline water electrolysis system for hydrogen production emphatically expounded: the technology of hydrogen production by alkaline water electrolysis has the features of low investment cost, long service life and large scale and is an important means to achieve the carbon peak target at current stage. Then, in the aspect of modeling for the alkaline water electrolysis system for hydrogen production, the influencing mechanisms of the energy consumption and gas purity of electrolytic cell as well as the temperature and system control are quantitatively analyzed. This study provides theoretical and technical supports for the development of hydrogen production technology by alkaline water electrolysis.

Key words: alkaline water electrolysis for hydrogen production, dynamic response, system modeling and control, gas purity