1 |
IRENA (2021). Green hydrogen supply: a guide to policy making[M]. International Renewable Energy Agency, Abu Dhabi.2021.
|
2 |
GODULA-JOPEK Agata. Hydrogen production by electrolysis[M]. Wiley, 2015, ISBN: 978-3-527-33342-4.
|
3 |
AMARAL L, MINKIEWICZ J, ŠLJUKIC B, et al. Toward tailoring of electrolyte additives for efficient alkaline water electrolysis: salicylate-based ionic liquids[J]. Applied Energy Materials, 2018, 1:4731-4742.
|
4 |
崔卫玉.几种制氢技术的研究综述[J].江西冶金,2021,41(3):56-61,70.
|
|
CUI WY. A brief review on research progress of several new hydrogen production technologies[J]. Jiangxi Metallurgy, 2021,41(3):56-61,70.
|
5 |
ARTUSO P, GAMMON R, ORECCHINI F, et al. Alkaline electrolysers: model and real data analysis[J]. International Journal of Hydrogen Energy,2011,36(13):
|
6 |
郭育菁. 一种碱水制氢电解槽结构设计及性能优化[D].北京:北京化工大学,2020.
|
|
GUO Y J. Structural design and performance optimization of an alkaline water hydrogen electrolyzer[D]. Beijing:Beijing University of Chemical Technology, 2020.
|
7 |
PHILLIPS R, EDWARDS A, ROME B, et al. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design[J]. International Journal of Hydrogen Energy,2017, 42(38):23986-23994.
|
8 |
OLIVIER P, BOURASSEAU C, BOUAMAMA Pr. B. Low-temperature electrolysis system modelling: a review[J]. Renewable and Sustainable Energy Reviews,2017,78.
|
9 |
LEROY R L, BOWEN C T, LEROY D J. The thermodynamics of aqueous water electrolysis[J]. Journal of The Electrochemical Society,2019,127(9).
|
10 |
CHEN Yanan, MOJICA Felipe, LI Guangfu,et al. Experimental study and analytical modeling of an alkaline water electrolysis cell[J]. International Journal of Energy Research,2017,41(14).
|
11 |
SHEN Xiaojun, ZHANG Xiaoyun, LIE Tek Tjing,et al. Mathematical modeling and simulation for external electrothermal characteristics of an alkaline water electrolyzer[J]. International Journal of Energy Research,2018,42(12).
|
12 |
JANG Dohyung,CHO Hyun-Seok,KANG Sanggyu. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy,2021,287.
|
13 |
JESÚS Rodríguez, ERNESTO Amores. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production[J]. Processes,2020,8(12).
|
14 |
HAVERKORT J W,RAJAEI H. Voltage losses in zero-gap alkaline water electrolysis[J]. Journal of Power Sources,2021,497.
|
15 |
MARANGIO F, SANTARELLI M, CALÌ M. Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production[J]. International Journal of Hydrogen Energy,2008,34(3).
|
16 |
ABDIN Z, WEBB C J, MACA GRAY E. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International Journal of Hydrogen Energy,2015,40(39).
|
17 |
ABDIN Z, WEBB C J, MACA GRAY E. Modelling and simulation of an alkaline electrolyser cell[J]. Energy,2017,138.
|
18 |
JESÚS R, SIMONETTA P, MARGARITA S-M,et al. Simple and precise approach for determination of ohmic contribution of diaphragms in alkaline water electrolysis[J]. Membranes,2019,9(10).
|
19 |
LEBBAL M E, LECŒUCHE S. Identification and monitoring of a PEM electrolyser based on dynamical modelling[J]. International Journal of Hydrogen Energy,2009,34(14).
|
20 |
ZHANG H C, SU S H, LIN G X. Efficiency calculation and configuration design of a PEM electrolyzer system for hydrogen production[J]. International Journal of Electrochemical Science, 2013,7:4143–4157.
|
21 |
KIM Huiyong, PARK Mikyoung, LEE Kwang Soon. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy,2013,38(6).
|
22 |
HAMMOUDI M, HENAO C, AGBOSSOU K,et al. New multi-physics approach for modelling and design of alkaline electrolyzers[J]. International Journal of Hydrogen Energy,2012,37(19).
|
23 |
BALZER R J, VOGT H. Effect of electrolyte flow on the bubble coverage of vertical gas[J]. Journal of The Electrochemical Society,2002,150(1).
|
24 |
HENAO C, AGBOSSOU K, HAMMOUDI M,et al. Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser[J]. Journal of Power Sources,2014,250.
|
25 |
SCHMIDT O, GAMBHIR A, STAFFELL I,et al. Future cost and performance of water electrolysis: an expert elicitation study[J]. International Journal of Hydrogen Energy,2017,42(52).
|
26 |
SCHRÖDER V, EMONTS B, JANßEN H,et al. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar[J]. Chemical Engineering & Technology,2004,27(8).
|
27 |
URSÚA A, BARRIOS E L, PASCUAL J,et al. Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements[J]. International Journal of Hydrogen Energy,2016,41(30).
|
28 |
GRIGORIEV S A, POREMBSKIY V I, KOROBTSEV S V,et al. High-pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy,2011,36(3).
|
29 |
AFSHARI E, KHODABAKHSH S, JAHANTIGH N, et al. Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer[J]. International Journal of Hydrogen Energy,2021,46(19).
|
30 |
HAUG P, KOJ M, TUREK T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy,2017,42(15).
|
31 |
HAUG P, KREITZ B, KOJ M, et al. Process modelling of an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy,2017,42(24).
|
32 |
SCHUG C A. Operational characteristics of high-pressure, high-efficiency water-hydrogen-electrolysis[J]. International Journal of Hydrogen Energy,1998,23(12).
|
33 |
SÁNCHEZ M, AMORES E, RODRÍGUEZ L,et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy,2018.
|
34 |
KIRATI S K, HAMMOUDI M, MOUSLI I M A. Hybrid energy system for hydrogen production in the Adrar region (Algeria): production rate and purity level[J]. International Journal of Hydrogen Energy,2018,43(6).
|
35 |
TRINKE P, HAUG P, BRAUNS J,et al. Hydrogen crossover in pem and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies[J]. Journal of The Electrochemical Society,2018,165(7).
|
36 |
QI R M, GAO X P, LIN J, et al. Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International Journal of Hydrogen Energy,2021,46(73).
|
37 |
DAVIS R E, HORVATH G L, TOBIAS C W. The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions[J]. Pergamon,1967,12(3).
|
38 |
RUETSCHI P, AMLIE R F. Solubility of hydrogen in potassium hydroxide and sulfuric acid. salting-out and hydration[J]. Journal of Physical Chemistry (1952), 1966, 70(3): 718-723
|
39 |
WEISENBERGER S, SCHUMPE A. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K[J]. AIChE Journal, 1996, 42(1): 298-300.
|
40 |
ULLEBERG Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International Journal of Hydrogen Energy,2003,28(1).
|
41 |
DIÉGUEZ P M, URSÚA A, SANCHIS P,et al. Thermal performance of a commercial alkaline water electrolyzer: experimental study and mathematical modeling[J]. International Journal of Hydrogen Energy,2008,33(24):7338-7354.
|
42 |
HAMMOUDI M, HENAO C, AGBOSSOU K, et al. New multi-physics approach for modelling and design of alkaline electrolyzers[J]. International Journal of Hydrogen Energy, 2012, 37(19):13895-13913.
|
43 |
JANG Dohyung,CHOI Wonjae,Cho Hyun-Seok,et al. Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system[J]. Journal of Power Sources,2021,506.
|
44 |
DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al. Phenomenological based model of hydrogen production using an alkaline self-pressurized electrolyzer[C]. 2019 18th European Control Conference (ECC), 2019.
|
45 |
DAVID M, OCAMPO-MARTINEZ C, SANCHEZ-PENA R. Advances in alkaline water electrolyzers: a review[J]. Journal of Energy Storage, 2019, 23:392-403.
|
46 |
DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al. Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach [J]. International Journal of Hydrogen Energy,2020,45(43).
|
47 |
DAVID M, BIANCHI F, OCAMPO-MARTINEZ C, et al. Model-based control design for H2 purity regulation in high-pressure alkaline electrolyzers[J]. Journal of the Franklin Institute,2021,358(8).
|
48 |
NEVES JUNIOR N P,PINTO E A. Development of a pressurized bipolar alkaline water electrolyzer[J]. Proceedings of WICaC 2010: 5. International workshop on hydrogen and fuel cells, 2021: 194-202.
|
49 |
SÁNCHEZ M, AMORES E, ABAD D, et al. Aspen plus model of an alkaline electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy,2020,45(7).
|
50 |
HUG W,DIVISEK J,MERGEL J,et al. Highly efficient advanced alkaline electrolyzer for solar operation[J]. Pergamon,1992,17(9).
|
51 |
URSÚA A, SANCHIS P. Static–dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser[J]. International Journal of Hydrogen Energy,2012,37(24).
|
52 |
沈小军,聂聪颖,吕洪.计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J].电工技术学报,2021,36(3):463-472.
|
|
SHEN X J, NIE C Y, LV H. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J].Transactions of China Electrotechnical Society, 2021,36(3):463-472.
|
53 |
HERNANDEZ D D, GENCER E. Techno-economic analysis of balancing California’s power system on a seasonal basis: hydrogen vs. lithium-ion batteries[J]. Applied Energy,2021,300.
|
54 |
GAO Weitao, HU Zunyan, HUANG Haiyan, et al. All-condition economy evaluation method for fuel cell systems: system efficiency contour map[J]. eTransportation,2021,9.
|
55 |
LUO Yiwei, QIAN Yuping, ZENG Zezhi, et al. Simulation and analysis of operating characteristics of power battery for flying car utilization[J]. eTransportation,2021,8.
|