汽车工程 ›› 2022, Vol. 44 ›› Issue (8): 1199-1211.doi: 10.19562/j.chinasae.qcgc.2022.08.009

所属专题: 新能源汽车技术-动力电池&燃料电池2022年

• • 上一篇    下一篇

均布模组式动力电池包热失控典型模式分析

陈吉清,冼浩岚,兰凤崇()   

  1. 1.华南理工大学机械与汽车工程学院,广州  510641
    2.华南理工大学,广东省汽车工程重点实验室,广州  510641
  • 收稿日期:2022-01-27 修回日期:2022-03-18 出版日期:2022-08-25 发布日期:2022-08-25
  • 通讯作者: 兰凤崇 E-mail:fclan@scut.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB0104100);广东省科技计划(2015B010137002);国家车辆事故深度调查体系(NAIS)和国家新能源汽车事故调查协作网资助

Analysis on Typical Modes of Thermal Runaway in Power Battery Pack with Uniformly Distributed Modules

Jiqing Chen,Haolan Xian,Fengchong Lan()   

  1. 1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou  510641
    2.South China University of Technology,Guangdong Provincial Automobile Engineering Key Laboratory,Guangzhou  510641
  • Received:2022-01-27 Revised:2022-03-18 Online:2022-08-25 Published:2022-08-25
  • Contact: Fengchong Lan E-mail:fclan@scut.edu.cn

摘要:

根据广泛采用的均布模组式电池包结构,搭建均布模组热失控扩散试验平台,开展均布电池模组热失控扩散试验,分析均布模组热失控扩散行为特性和热流传递的规律。结合由电池包热失控引起电动汽车火灾事故真实案例和均布模组热失控扩散试验结果验证均布模组式电池包热失控的扩散模式。结果表明:均布模组式动力电池包热失控扩散模式包括模组内热失控扩散和模组间热失控扩散;首先发生热失控的模组1内热失控时间间隔分别为44、34、31 s,而受模组1的影响而发生热失控的模组2内热失控时间间隔明显缩短,分别为17、15、11 s,模组内热失控时间间隔越来越小,电池单体热失控释放的触发相邻电池单体热失控的热量随着热失控的扩展逐渐减小;模组间热失控扩展存在明显的时间间隔,通常达到若干分钟量级;电池单体在热滥用条件下的起始温度可分为热失控触发温度和热失控环境触发温度,模组间的壁面热辐射和空气热传导增大了相邻模组内的热失控扩散速度,壁面热辐射传递的热量最高可达95.18 kJ,空气热传导传递的热量最高为3.58 kJ,模组间热量的主要传递方式为壁面热辐射。为阻隔模组内热失控扩散,应加强模组间热失控扩散的防护措施。

关键词: 动力电池热失控, 均布模组, 模组间热失控扩散, 电动汽车火灾事故

Abstract:

According to the structure of the widely used power battery pack with uniformly distributed modules, a thermal runaway propagation test platform for uniformly distributed modules is built, and the thermal runaway propagation test is carried out to analyze the thermal runaway propagation behavior characteristics and the law of heat flow transfer. The combination of the real cases of electric vehicle fire accident caused by the thermal runaway of power battery pack and the result of thermal runaway propagation test for the uniformly distributed battery modules verifies the propagation mode of thermal runaway for the battery pack. The results show that there are two propagation modes of thermal runaway for the battery pack: the thermal runaway propagation within the module and the thermal runaway propagation between different modules; The thermal runaway time interval within the module 1, where the thermal runaway occurs first, is 44, 34, 31 s respectively and that within the module 2, whose thermal runaway is caused by the effects of module 1, is significantly shortened, being 17, 15, 11 s respectively, with the thermal runaway time interval within the module getting smaller and smaller, the heat released by the thermal runaway of the battery cell that triggers the thermal runaway of the adjacent battery cells gradually reduces with the propagation of thermal runaway, and there exists an apparent time lag in the propagation of thermal runaway between modules, usually reaching the order of several minutes. There are two distinguish initial temperature of thermal runaway for the battery cell under thermal abuse conditions: the thermal runaway trigger temperature and the thermal runaway environment trigger temperature. The wall heat radiation and air heat conduction between modules increase the thermal runaway propagation speed in adjacent module, in which the maximum heat transferred by wall heat radiation can reach 95.18 kJ, while the maximum heat transferred by air heat conduction is 3.58 kJ, indicating the main way of heat transfer between modules being wall heat radiation. In order to prevent the thermal runaway from propagation within module, the protection measures for the propagation of thermal runaway between modules should be strengthened.

Key words: power battery thermal runaway, uniformly distributed modules, thermal runaway propagation between modules, electric vehicle fire accident