汽车工程 ›› 2023, Vol. 45 ›› Issue (2): 263-272.doi: 10.19562/j.chinasae.qcgc.2023.02.011
所属专题: 智能网联汽车技术专题-感知&HMI&测评2023年
收稿日期:
2022-07-20
修回日期:
2022-08-31
出版日期:
2023-02-25
发布日期:
2023-02-21
通讯作者:
武志斐
E-mail:wuzhifei@tyut.edu.cn
基金资助:
Received:
2022-07-20
Revised:
2022-08-31
Online:
2023-02-25
Published:
2023-02-21
Contact:
Zhifei Wu
E-mail:wuzhifei@tyut.edu.cn
摘要:
为实现在自动驾驶复杂场景下检测数量变化的车道线,提出一种基于实例分割的车道线检测算法。首先以ResNet18网络作为主干网络提取图像特征,采用特征金字塔网络进行特征融合。同时设计一种扩张卷积残差模块来提高检测的精度;然后基于车道线的位置进行实例分割,利用语义分割出的车道线点位置预测对应的聚类点位置,通过对聚类点采用DBSCAN聚类算法实现车道线实例区分。结果表明,该算法能够在复杂的自动驾驶场景下有效地进行多车道线检测,在CULane数据集和TuSimple数据集上的调和平均值分别达到75.2%和97.0%。
武志斐,李守彪. 基于实例分割的车道线检测算法[J]. 汽车工程, 2023, 45(2): 263-272.
Zhifei Wu,Shoubiao Li. Lane Detection Algorithm Based on Instance Segmentation[J]. Automotive Engineering, 2023, 45(2): 263-272.
1 | 吴一全, 刘莉. 基于视觉的车道线检测方法研究进展[J]. 仪器仪表学报, 2019, 40(12): 92-109. |
WU Y Q, LIU L. Research and development of the vision-based lane detection methods[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 92-109. | |
2 | LIANG D, GUO Y C, ZHANG S K, et al. Lane detection: a survey with new results[J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
3 | SUN T Y, TSAI S J, CHAN V. HSI color model based lane-marking detection[C]. 2006 IEEE Intelligent Transportation Systems Conference. IEEE, 2006: 1168-1172. |
4 | 陈涛, 张洪丹, 陈东,等. 基于优先像素与卡尔曼滤波追踪的车道线检测[J]. 汽车工程, 2016, 38(2): 200-205,220. |
CHEN T, ZHANG H D, CHEN D, et al. Lane detection based on high priority pixels and tracking by Kalman filter[J]. Automotive Engineering, 2016, 38(2): 200-205,220. | |
5 | 金智林, 何麟煊, 赵万忠. 用于智能汽车的复杂光照环境车道线检测及跟踪方法[J]. 汽车安全与节能学报, 2019, 10(4): 459-466. |
JIN Z L, HE L X, ZHAO W Z. Detection and tracking method of lane line for intelligent vehicles under complex illumination condition[J]. Journal of Automotive Safety and Energy, 2019, 10(4): 459-466. | |
6 | 吴骅跃, 赵祥模. 基于IPM和边缘图像过滤的多干扰车道线检测[J]. 中国公路学报, 2020, 33(5): 153-164. |
WU H Y, ZHAO X M. Multi-interference lane recognition based on IPM and edge image filtering[J]. China Journal of Highway and Transport, 2020, 33(5): 153-164. | |
7 | 张嘉明, 钱立军, 邱利宏, 等. 一种多线形车道线检测算法[J]. 合肥工业大学学报(自然科学版), 2020, 43(4): 536-542,570. |
ZHANG J M, QIAN L J, QIU L H, et al. A multiple lane detection algorithm[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(4): 536-542,570. | |
8 | 陈无畏, 蒋玉亭, 谈东奎. 一种基于边缘点投影的车道线快速识别算法[J]. 汽车工程, 2017, 39(3): 357-363. |
CHEN W W, JIANG Y T, TAN D K. A fast lane marking recognition algorithm based on edge projection[J]. Automotive Engineering, 2017, 39(3): 357-363. | |
9 | PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 7276-7283. |
10 | HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1013-1021. |
11 | NEVEN D, DE B B, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]. 2018 IEEE Intelligent Vehicles Symposium(IV). IEEE, 2018: 286-291. |
12 | QIN Z, WANG H, LI X. Ultra fast structure-aware deep lane detection[C]. Proceedings of European Conference on Computer Vision, 2020: 276-291. |
13 | YOO S, LEE H S, MYEONG H, et al. End-to-end lane marker detection via row-wise classification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 1006-1007. |
14 | TABELINI L, BERRIEL R, PAIXAO T M, et al. Polylanenet: lane estimation via deep polynomial regression[C]. Proceedings of the International Conference on Pattern Recognition. IEEE, 2021: 6150-6156. |
15 | LIU R, YUAN Z, LIU T, et al. End-to-end lane shape prediction with transformers[C]. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2021: 3694-3702. |
16 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
17 | DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255. |
18 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
19 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]. Proceedings of the 4th International Conference on Learning Representations. IEEE, 2016: 1-13. |
20 | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]. 2018 IEEE Winter Conference on Applications of Computer Vision. IEEE, 2018:1451-1460. |
21 | BÄCKLUND H, HEDBLOM A, NEIJMAN N. A density-based spatial clustering of application with noise[J]. Data Mining TNM033, 2011: 11-30. |
22 | MISHRA P, SARAWADEKAR K. Polynomial learning rate policy with warm restart for deep neural network[C]. IEEE Region Ten Conference. IEEE, 2019: 2087-2092. |
[1] | 胡林,李根,王方,林淼,巫宁. 基于CIDAS事故数据的路口乘用车-两轮车测试场景研究[J]. 汽车工程, 2023, 45(8): 1417-1427. |
[2] | 江浩斌, 路保松, 李傲雪. 汽车行驶轨迹数据密度峰值聚类算法研究[J]. 汽车工程, 2023, 45(7): 1153-1162. |
[3] | 陈妍妍,王海,蔡英凤,陈龙,李祎承. 基于检测的高效自动驾驶实例分割方法[J]. 汽车工程, 2023, 45(4): 541-550. |
[4] | 姜俊昭,杨文豪,彭彬,郭婷,徐业凯,王国卓. 基于能耗加权策略的燃料电池汽车续驶里程预测[J]. 汽车工程, 2023, 45(12): 2357-2365. |
[5] | 金立生,贺阳,王欢欢,霍震,谢宪毅,郭柏苍. 基于自适应阈值DBSCAN的路侧点云分割算法[J]. 汽车工程, 2022, 44(7): 987-996. |
[6] | 张哲雨,吕超,李景行,熊光明,吴绍斌,龚建伟. 基于车辆视角数据的行人轨迹预测与风险等级评定[J]. 汽车工程, 2022, 44(5): 675-683. |
[7] | 黄鹤,李文龙,杨澜,王会峰,王飚,茹锋. DHSSA优化的K均值互补迭代车型信息数据聚类[J]. 汽车工程, 2022, 44(5): 691-700. |
[8] | 马雷,刘泽宾,曹彪,王文举,邱泉源. 基于粗糙性度量的道路可行驶区域识别方法[J]. 汽车工程, 2021, 43(11): 1594-1601. |
[9] | 赵治国,王鹏,陈晓蓉,梁凯冲. 转向避撞工况下装载激光雷达车辆的障碍物跟踪[J]. 汽车工程, 2021, 43(11): 1611-1619. |
[10] | 章军辉,付宗杰,郭晓满,李庆,陈大鹏,赵野. 基于HS⁃FCM模糊聚类的快速多目标车辆跟踪算法[J]. 汽车工程, 2021, 43(10): 1419-1426. |
[11] | 孙文,荣浚材,王军年,徐佳,吕斯文,刘俐丽. 带弯道信息的城市复合行驶工况构建方法研究[J]. 汽车工程, 2021, 43(10): 1519-1527. |
[12] | 郭景华, 李克强, 王进, 陈涛, 李文昌, 王班. 基于危险场景聚类分析的前车随机运动状态预测研究*[J]. 汽车工程, 2020, 42(7): 847-853. |
[13] | 朱冰, 张培兴, 赵健. 面向多维度逻辑场景的自动驾驶安全性聚类评价方法*[J]. 汽车工程, 2020, 42(11): 1458-1463. |
[14] | 谷先广, 孟科委, 姚鑫鑫, 汪洪波. 基于组合聚类的智能汽车横向稳定性判别方法*[J]. 汽车工程, 2020, 42(11): 1497-1505. |
[15] | 赵治国, 冯建翔, 周良杰, 王凯, 胡昊锐, 张海山, 宁忠麟. 驾驶员避撞转向行为的改进K-means聚类与识别*[J]. 汽车工程, 2020, 42(1): 52-58. |
|