汽车工程 ›› 2023, Vol. 45 ›› Issue (7): 1286-1298.doi: 10.19562/j.chinasae.qcgc.2023.07.019
所属专题: 车身设计&轻量化&安全专题2023年
• 精选论文 • 上一篇
收稿日期:
2022-12-04
修回日期:
2023-02-08
出版日期:
2023-07-25
发布日期:
2023-07-25
通讯作者:
梁鸿宇
E-mail:lianghongyu@jlu.edu.cn
基金资助:
Dengfeng Wang,Chunda Lu,Hongyu Liang()
Received:
2022-12-04
Revised:
2023-02-08
Online:
2023-07-25
Published:
2023-07-25
Contact:
Hongyu Liang
E-mail:lianghongyu@jlu.edu.cn
摘要:
角度冲击在车辆事故中较为常见,具有合理诱导结构的吸能装置对综合耐撞性能的发挥至关重要。本文研究了基于铝/CFRP复合管诱导结构的设计问题。为此,首先建立铝/CFRP复合管的高精度有限元模型,并进行试验验证。然后,基于多角度压缩工况,分别研究了诱导槽的位置参数、数量参数、形状参数以及尺寸参数对铝/CFRP复合管耐撞性能的影响规律。结果表明:诱导槽的位置参数对于综合耐撞性能影响最大,在复合管靠近顶端的位置处开设一个矩形诱导槽,可以大幅降低峰值力水平,同时兼顾吸能稳定性。最后,基于第二代非劣解排序遗传算法(NSGA-II)开展了复合管诱导槽的多目标优化设计。优化结果表明:在保证各工况权重方案的综合吸能性不降低的前提下,复合管的峰值力降低了35.5%,很好地解决了高吸能性与低峰值力难以兼顾的问题。该研究结果对于车辆碰撞吸能部件的设计应用具有重要的指导意义。
王登峰, 卢春达, 梁鸿宇. 多角度冲击工况下铝/CFRP复合管诱导槽多目标优化设计[J]. 汽车工程, 2023, 45(7): 1286-1298.
Dengfeng Wang, Chunda Lu, Hongyu Liang. Multi-objective Optimization Design of Induction Groove for Aluminum/CFRP Hybrid Tube Under Multi-angle Compression Condition[J]. Automotive Engineering, 2023, 45(7): 1286-1298.
表10
不同样本点及其对应的目标性能值"
序号 | d/mm | h/mm | PCF/kN | SEA0°/(kJ·kg-1) | SEA10°/(kJ·kg-1) | SEA20°/(kJ·kg-1) | SEA30°/(kJ·kg-1) |
---|---|---|---|---|---|---|---|
1 | 2.05 | 90.909 | 104.37 | 15.93 | 16.59 | 12.99 | 12.02 |
2 | 2.95 | 34.091 | 101.38 | 14.86 | 18.45 | 16.07 | 11.43 |
3 | 2.77 | 79.545 | 105.15 | 15.74 | 15.91 | 15.96 | 12.21 |
4 | 2.59 | 113.636 | 106.26 | 18.86 | 14.31 | 11.57 | 11.33 |
5 | 2.41 | 11.364 | 91.11 | 18.43 | 18.41 | 15.69 | 11.32 |
6 | 3.50 | 56.818 | 104.97 | 16.78 | 17.63 | 13.91 | 10.07 |
7 | 1.50 | 68.182 | 100.85 | 17.62 | 15.97 | 16.17 | 11.52 |
8 | 3.32 | 102.273 | 107.50 | 16.47 | 16.34 | 16.08 | 11.79 |
9 | 1.68 | 22.727 | 98.09 | 15.41 | 19.37 | 15.24 | 12.83 |
10 | 2.23 | 45.455 | 102.58 | 16.18 | 18.05 | 14.33 | 11.41 |
11 | 3.14 | 0 | 76.72 | 17.11 | 15.45 | 13.73 | 12.74 |
12 | 1.86 | 125 | 104.77 | 13.87 | 13.39 | 11.03 | 10.27 |
13 | 2.43 | 16.67 | 80.52 | 18.36 | 16.69 | 15.45 | 8.40 |
14 | 2.17 | 83.33 | 104.63 | 17.45 | 15.32 | 15.84 | 12.09 |
15 | 2.03 | 50 | 102.69 | 15.75 | 18.37 | 11.12 | 12.44 |
表12
代理模型耐撞性指标精度验证"
性能指标 | 样本点13 | 样本点14 | 样本点15 | |
---|---|---|---|---|
PCF/kN | 预测值 | 88.56 | 104.42 | 106.01 |
仿真值 | 80.52 | 104.63 | 102.69 | |
误差 | -9.98% | 0.20% | -3.23% | |
SEAcase1 / (kJ·kg-1) | 预测值 | 13.36 | 13.99 | 14.69 |
仿真值 | 13.17 | 14.40 | 13.57 | |
误差 | -1.46% | 2.83% | -8.27% | |
SEAcase2 / (kJ·kg-1) | 预测值 | 15.28 | 14.81 | 15.07 |
仿真值 | 14.73 | 15.18 | 14.43 | |
误差 | -3.75% | 2.49% | -4.44% | |
SEAcase3 / (kJ·kg-1) | 预测值 | 16.67 | 15.59 | 15.49 |
仿真值 | 16.29 | 15.96 | 15.29 | |
误差 | -2.36% | 2.26% | -1.36% |
1 | FANG J G, SUN G Y, QIU N, et al. On design optimization for structural crashworthiness and its state of the art[J]. Structural and Multidisciplinary Optimization, 2017, 55(3): 1091-1119. |
2 | WANG S, HU X L, WANG X G, et al. Design and experiment of V-shaped variable thickness rolling for rolled profiled strips[J]. Journal of Materials Research and Technology, 2021, 15: 4381-4396. |
3 | WANG S, WANG X G, LIU X H, et al. Experiment and simulation of variable thickness rolling for 3D-profiled blank(Article)[J]. Journal of Materials Processing Technology, 2021, 290: 116971. |
4 | 那景新, 浦磊鑫, 秦国锋, 等. 温度对钢/铝粘接接头失效强度影响的研究[J]. 汽车工程, 2019, 41(2): 225-231. |
NA J X, PU L X, QIN G F, et al. A study on the effects of temperature on the failure strength of steel-aluminum adhesive joints[J]. Automotive Engineering, 2019, 41(2): 225-231. | |
5 | 陆斌, 陈芙蓉, 智建国, 等. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216. |
LU B, CHEN F R, ZHI J G, et al. Enhanced welding properties of high strength steel via rare earth oxide metallurgy technology[J]. Acta Metallurgica Sinica, 2020, 56(9): 1206-1216. | |
6 | 马芳武, 王强, 梁鸿宇, 等. 梯度负泊松比结构填充吸能盒多工况优化设计[J]. 汽车工程, 2021, 43(5): 754-761. |
MA F W, WANG Q, LIANG H Y, et al. Multi-objective optimization of crash box filled with gradient negative Poisson’s ratio structure under multiple conditions[J]. Automotive Engineering, 2021, 43(5): 754-761. | |
7 | LIANG H Y, WANG Q, PU Y F, et al. In-plane compressive behavior of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness[J]. International Journal of Mechanical Sciences, 2021, 209: 106723. |
8 | MA F W, ZHAO Y, LIANG H Y, et al. Effects of cell micro-topology on the in-plane dynamic crushing analysis of re-entrant square cellular material[J]. Automotive Innovation, 2018, 1(1): 24-34. |
9 | 李泽阳, 刘钊, 朱平. 注塑短纤维增强复合材料汽车尾门内板轻量化设计[J]. 汽车工程, 2022, 44(5): 789-797. |
LI Z Y, LIU Z, ZHU P. Lightweight design of vehicle tail-door inner panel made of injection molded short fiber reinforced polymer composite[J]. Automotive Engineering, 2022, 44(5): 789-797. | |
10 | 高云凯, 刘哲, 徐亚男, 等. CFRP在汽车覆盖件中的应用研究[J]. 汽车工程, 2020, 42(7): 978-984. |
GAO Y K, LIU Z, XU Y N, et al. Research on the application of CFRP in automobile panels[J]. Automotive Engineering, 2020, 42(7): 978-984. | |
11 | JAMES M, EDWARD B, RICHARD P, et al. A performance versus cost analysis of prepreg carbon fiber epoxy energy absorption structures[J]. Composite Structures, 2015, 124: 206-213. |
12 | KIM H C, SHIN D K, LEE J J, et al. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application[J]. Composite Structures, 2014, 112(1): 1-10. |
13 | ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]. International Journal of Impact Engineering, 2020, 141: 103509. |
14 | ZHU G H, SUN G Y, YU H, et al. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences, 2018, 135: 458-483. |
15 | MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. On the experimental investigation of crash energy absorption in laminate splaying collapse mode of FRP tubular components[J]. Composite Structures, 2005, 70(4): 413-429. |
16 | MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental[J]. Composite Structures, 2005, 69(4): 407-420. |
17 | MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. The static and dynamic axial collapse of CFRP square tubes: finite element modelling[J]. Composite Structures, 2006, 74(2): 213-225. |
18 | KIM H C, SHIN D K, LEE J J, et al. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application[J]. Composite Structures, 2014, 112(1): 1-10. |
19 | 黄建城. 含薄弱环节复合材料圆管轴向吸能特性研究[D]. 南京: 南京航空航天大学, 2011. |
HUANG J C. On the axial energy absorption behaviour of composite tubes with crush triggers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. | |
20 | 李晓南, 牟浩蕾, 周建, 等. 复合材料增强铝方管耐撞性数值模拟[J]. 航空材料学报, 2016, 36(2): 56-64. |
LI X N, MOU H L, ZHOU J, et al. Numerical study on crashworthiness of aluminum-composite square hybrid tubes[J]. Journal of Aeronautical Materials, 2016, 36(2): 56-64. | |
21 | HU H J, DU B, JIANG W K, et al. Integrated design in load carrying and energy absorption of composite tube[J]. Frontiers in Materials, 2022, 8. |
22 | HUSSEIN R D, RUAN D, LU G X, et al. An energy dissipating mechanism for crushing square aluminium/CFRP tubes[J]. Composite Structures, 2018, 183(1): 643-653. |
23 | HUSSEIN R D, RUAN D, LU G X. Cutting and crushing of square aluminium/CFRP tubes[J]. Composite Structures, 2017, 171(7): 403-418. |
24 | MA Q H, DONG F, GAN X H, et al. Crashworthiness design of gradient bionic Al/CFRP hybrid tubes under multiple loading conditions[J]. Mechanics of Advanced Materials and Structures, 2022. |
25 | LIANG H Y, HAO W Q, SUN H, et al. On the crashworthiness of bionic bamboo tubes under multi-angle compression loading[J]. International Journal of Mechanical Sciences, 2022, 218, 107067. |
26 | ZHANG J Y, LU B Q,ZHENG D F, et al. Experimental and numerical study on energy absorption performance of CFRP/aluminum hybrid square tubes under axial loading[]. Thin-Walled Structures, 2020,155: 106948. |
27 | LU B Q, SHEN C L, ZHANG J Y, et al. Study on energy absorption performance of variable thickness CFRP aluminum hybrid square tubes under axial loading[J]. Composite Structures, 2021, 276: 114469. |
28 | 王凯, 马其华, 查一斌. 端部诱导孔对Al-CFRP混合薄壁管轴向压缩性能的影响[J]. 复合材料科学与工程, 2021(2): 65-71. |
WANG K, MA Q H, ZHA Y B. Effect of induced holes on axial compressive properties of Al-CFRP hybrid thin-walled tubes[J]. Composites Science and Engineering, 2021(2): 65-71. |
No related articles found! |
|