汽车工程 ›› 2023, Vol. 45 ›› Issue (12): 2348-2356.doi: 10.19562/j.chinasae.qcgc.2023.12.017
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
兰凤崇,潘威,陈吉清
Fengchong Lan,Wei Pan,Jiqing Chen
摘要:
锂离子动力电池剩余使用寿命(RUL)预测可评估电池未来状态,实现指导电池维护和降低故障危害。实车工况中电池循环条件不受控制,动态运行条件下的RUL预测仍存在杂乱数据处理困难、预测结果精度较差且无法兼顾老化不确定性等问题,提出注意力机制序列到序列-粒子滤波(Aseq2seq-PF)混合模型,选取公共荷电状态(SOC)充电区间获取归一化容量,采用迭代和直接的融合预测策略,Aseq2seq模型作为迭代部分实现容量序列精确预测,粒子滤波(PF)模型作为直接部分实现容量波动的不确定性预测,外推容量衰退趋势预测RUL。经实车动力电池数据验证,公共SOC充电区间有效获取了清晰容量衰退趋势,混合模型提高了容量衰退长期预测精度,具有良好鲁棒性,对比已有模型平均绝对误差下降56%以上,且输出满足不同应用需求的置信区间,实现老化不确定性描述。