1 |
SONG H, DING W, CHEN Y, et al. Pip: planning-informed trajectory prediction for autonomous driving[C].Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16. Springer International Publishing, 2020: 598-614.
|
2 |
桑海峰,陈旺兴,王海峰,等.基于多模式时空交互的行人轨迹预测模型[J].电子学报,2022,50(11):2806-2812.
|
|
SANG H F, CHEN W X, WANG H F, et al. Pedestrian trajectory prediction model based on multi-modal spatio-temporal interaction[J]. Journal of Electronics, 2022, 50(11): 2806-2812.
|
3 |
LI X, YING X, MOOI C C. Grip++: enhanced graph-based interaction aware trajectory prediction for autonomous driving[EB/OL]. [2019-07-17].https://arxiv.org/pdf/1907.07792.pdf.
|
4 |
SANG H, CHEN W, WANG J, et al. RDGCN: reasonably dense graph convolution network for pedestrian trajectory prediction[J]. Measurement, 2023, 213: 112675.
|
5 |
BAHARI M, SAADATNEJAD S, RAHIMI A, et al. Vehicle trajectory prediction works, but not everywhere[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17123-17133.
|
6 |
SAADATNEJAD S, BAHARI M, KHORSANDI P, et al. Are socially-aware trajectory prediction models really socially-aware?[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103705.
|
7 |
CAO Y, XU D, WENG X, et al. Robust trajectory prediction against adversarial attacks[C].Conference on Robot Learning. PMLR, 2023: 128-137.
|
8 |
CAO Y, XIAO C, ANANDKUMAR A, et al. AdvDO: realistic adversarial attacks for trajectory prediction[C] .European Conference on Computer Vision. Springer, Cham, 2022: 36-52.
|
9 |
ETTINGER S, CHENG S, CAINE B, et al. Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 9710-9719.
|
10 |
MI L, ZHAO H, NASH C, et al. HDMapGen: a hierarchical graph generative model of high definition maps[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4227-4236.
|
11 |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2255-2264.
|
12 |
ZHANG Q, HU S, SUN J, et al. On adversarial robustness of trajectory prediction for autonomous vehicles[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 15159-15168.
|
13 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2574-2582.
|
14 |
LI Y, WEN C, JUEFEI-XU F, et al. Fooling lidar perception via adversarial trajectory perturbation[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7898-7907.
|
15 |
WANG J, PUN A, TU J, et al. AdvSim: generating safety-critical scenarios for self-driving vehicles[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9909-9918.
|
16 |
HUANG X, CHENG X, GENG Q, et al. The apolloscape dataset for autonomous driving[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 954-960.
|
17 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631.
|
18 |
COIFMAN B, LI L. A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset[J]. Transportation Research Part B: Methodological, 2017, 105: 362-377.
|
19 |
KAMRA N, ZHU H, TRIVEDI D K, et al. Multi-agent trajectory prediction with fuzzy query attention[J]. Advances in Neural Information Processing Systems, 2020, 33: 22530-22541.
|
20 |
SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C].Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16. Springer International Publishing, 2020: 683-700.
|