汽车工程 ›› 2024, Vol. 46 ›› Issue (5): 830-841.doi: 10.19562/j.chinasae.qcgc.2024.05.009
• • 上一篇
收稿日期:
2023-11-18
修回日期:
2023-12-02
出版日期:
2024-05-25
发布日期:
2024-05-17
通讯作者:
葛蕴珊
E-mail:geyunshan@bit.edu.cn
基金资助:
Changyu Wang,Jiachen Li,Dan Tan,Yunshan Ge()
Received:
2023-11-18
Revised:
2023-12-02
Online:
2024-05-25
Published:
2024-05-17
Contact:
Yunshan Ge
E-mail:geyunshan@bit.edu.cn
摘要:
随着汽车排气颗粒物排放标准的日益严格化,制动、轮胎磨损等产生的非排气颗粒物已经超过排气颗粒物成为汽车颗粒排放的主要来源。本文综述了制动颗粒物的研究现状,已有研究表明轻型车实际驾驶条件下制动产生的颗粒物PN排放能够达到1012#/km级别,PM排放最高可达21 mg/km,均超过国六尾气排放限值,并且有相当一部分集中在极细颗粒物水平(<100 nm),且颗粒物中含有PAHs等致癌物质。未来应制定相应的标准,规范制动颗粒物测量和控制方法。
王昌钰,李家琛,谭丹,葛蕴珊. 轻型车制动颗粒排放研究现状[J]. 汽车工程, 2024, 46(5): 830-841.
Changyu Wang,Jiachen Li,Dan Tan,Yunshan Ge. Review of Current Researches on Light Duty Vehicle Brake Particle Emission[J]. Automotive Engineering, 2024, 46(5): 830-841.
表1
物理特征(按发表时间汇总)"
研究者 | 数量特征 | 质量特征 | 分析仪器 | 测试循环 |
---|---|---|---|---|
Mosleh等[ | 双峰;0.2-0.3 μm,1-2 μm | LA-700 laser scattering analyzer | 定压力定转速 | |
Olofsson等[ | 单峰;300-400 nm 浓度为4.0×106no/m3 | Aerosol Spectrometer,Grimm 1.109 | 自拟循环 | |
Wahlstr?m等[ | 单峰;0.35 μm | Aerosol Spectrometer,Grimm 1.109 | 自拟循环 | |
Hagino等[ | 单峰;1.2-3.5 μm | PM10:0.04-1.4 mg/km/vehicle PM2.5:0.04-1.2 mg/km/vehicle | CVS,MEXA-ONE | BSL-035 |
Perricone等[ | 单峰;0.1-0.2 μm 9.07×109# stop-1 brake-1 | ELPI | SAE-J 2707 | |
Mamakos等[ | 4.0×109#/km/brake | EEPS, DMS, ELPI, OPC | AK master procedure, WLTP | |
Farwick等[ | 双峰;0.03 μm,0.2 μm 2.0×1012 ~ 1.3×1013 #/km/brake | PMEF:1.4-2.1 mg/km/brake | EEPS, Dusttrak, APS | 3-h LACT |
Beji等[ | 单峰,峰值粒径为5 μm | ELPI, OPC, FMPS | ARTEMIS | |
Matějka等[ | 4.64×1010/cm3(第1次循环) 2.94×107/cm3(第6次循环) | PM10:7.66 mg/km | ELPI+ | LACT |
Kim等[ | 低金属:1.78-3.14 mg/km 非金属:0.3-2.34 mg/km | OPC | WLTC | |
Park等[ | 单峰:0.01 μm左右(低金属); 0.02 μm左右(非金属) | 低金属:11-21 mg/km/vehicle 非金属:1-5 mg/km/vehicle | ELPI+ | WLTC |
Vojtí?ek-Lom等[ | 3.3×1010#/km | EEPS, ELPI, DLPI | ISO 26867, SAE J2522 |
表2
化学组成"
研究者 | 排放元素分析 | 来源 | 研究者 | 排放元素分析 | 来源 |
---|---|---|---|---|---|
Sanders等[ | Fe, Si, Ba, Cu, Ca, Al | 低金属制动片 | Alemani等[ | Zn, Mg, Al, Fe | 低金属制动片 |
Thorpe等[ | Ba, Zn, Sb, Cu, Mg, K | 在新西兰市场上广泛应用的12种制动片 | Perricone等[ | Zn, Mg, Al, Sn, Fe | 低金属制动片 |
Kwak等[ | Coarse fraction: Fe, Ca, Zn Fine fraction: Fe, Ca, Ti, Ba | 低金属制动片 | Beji等[ | Al, Si, S, Fe, Cu | 低金属制动片 |
Hagino等[ | Fe, Cu, Ba, Sb | 2005-2010年日本市场占有率最高的3种制动片 | Menapace等[ | Al, S, Ti, Si, S | 低金属制动片 |
Nosko等[ | 低金属:Zn, Mg, Al, Sn, Fe, Cu 非石棉有机:Ba, Zr, Cu | 低金属制动片和非石棉有机制动片 | Matějka等[ | Fe, Cu, Mg, Al, Zn, Si | 半金属制动片 |
Plachá等[ | Fe, Cu, Ba, PAH, Sn | 低金属制动片 | Kim等[ | 低金属:Fe, Zn, Si, Ca 非金属:Al, Zr, Ti, Fe | 低金属制动片, 非金属制动片 |
1 | QUEROL X, ALASTUEY A, RUIZ C R, et al. Speciation and origin of PM10 and PM2.5 in selected European cities[J]. Atmospheric Environment, 2004, 38(38): 6547-6555. |
2 | FARWICK ZUM HAGEN F H, MATHISSEN M, GRABIEC T, et al. On-road vehicle measurements of brake wear particle emissions[J]. Atmospheric Environment, 2019, 217: 116943. |
3 | LIN S, LIU Y, CHEN H, et al. Impact of change in traffic flow on vehicle non-exhaust PM2.5 and PM10 emissions: a case study of the M25 motorway, UK[J]. Chemosphere, 2022, 303: 135069. |
4 | SINGH V, BISWAL A, KESARKAR A P, et al. High resolution vehicular PM10 emissions over megacity Delhi: relative contributions of exhaust and non-exhaust sources[J]. Science of The Total Environment, 2020, 699: 134273. |
5 | UNECE. UNECE adopts groundbreaking regulation introducing methodology to measure particle emissions from cars and vans’ braking systems[EB/OL]. (2023-06-21)[2023-11-28]. https://unece.org/media/transport/Vehicle-Regulations/press/380012. |
6 | HARRISON R M, JONES A M, GIETL J, et al. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements[J]. Environmental Science & Technology, 2012, 46(12): 6523-6529. |
7 | VOJTÍŠEK-LOM M, VACULÍK M, PECHOUT M, et al. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes[J]. Science of the Total Environment, 2021, 788: 147779. |
8 | 中华人民共和国生态环境部. 轻型汽车污染物排放限值及测量方法(中国第六阶段):GB18352.6—2016[S]. 北京:中国环境科学出版社,2016. |
Ministry of Ecology and Environment of the People’s Republic of China. Limits and measurement methods for emissions from light-duty vehicles (China 6): GB18352.6—2016[S]. Beijing: China Environmental Science Press, 2016. | |
9 | BUKOWIECKI N, LIENEMANN P, HILL M, et al. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland[J]. Atmospheric Environment, 2010, 44(19): 2330-2340. |
10 | GRIGORATOS T, MARTINI G. Brake wear particle emissions: a review[J]. Environmental Science and Pollution Research, 2015, 22(4): 2491-2504. |
11 | KOUSOULIDOU M, NTZIACHRISTOS L, MELLIOS G, et al. Road-transport emission projections to 2020 in European urban environments[J]. Atmospheric Environment, 2008, 42(32): 7465-7475. |
12 | LAWRENCE S, SOKHI R, RAVINDRA K. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques[J]. Environmental Pollution, 2016, 210: 419-428. |
13 | European Environment Agency. European Union emission inventory report 1990-2016[EB/OL]. [2023-11-28]. https://www.eea.europa.eu/publications/european-union-emission-inventory-report-1990-2016. |
14 | KATSOUYANNI K, TOULOUMI G, SAMOLI E, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project[J]. Epidemiology, 2001, 12(5): 521-531. |
15 | SAMET J M, DOMINICI F, CURRIERO F C, et al. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994[J]. New England Journal of Medicine, 2000, 343(24): 1742-1749. |
16 | POPE III C A. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA, 2002, 287(9): 1132. |
17 | 郝艳召, 邓顺熙, 邱兆文,等. 机动车非尾气颗粒物排放研究[J]. 汽车工程, 2015, 37(2): 145-149,154. |
HAO Y Z, DENG S X, QIU Z W, et al. A research on the non-exhaust particulate emissions of motor vehicles[J]. Automotive Engineering, 2015, 37 (2): 145-149,154. | |
18 | STONE V, MILLER M R, CLIFT M J D, et al. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge[J]. Environmental Health Perspectives, 2017, 125(10): 106002. |
19 | 陈东, 梁华军. 机动车辆制动摩擦粉尘对环境污染的研究综述[J]. 润滑与密封, 2011, 36(5): 106-112,115. |
CHEN D, LIANG H J. Review of automotive brake wear particulate matter emissions and environmental lmpact[J]. Lubrication Engineering, 2011, 36(5): 106-112,115. | |
20 | 杨溦. 武汉市汽车制动重金属/轮胎PAHs污染负荷及控制措施[D]. 武汉: 华中科技大学, 2014. |
YANG W. Brake heavy metal / tire PAHs pollution load and control measures of automobile in wuhan city[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
21 | 刘笃优, 马尧, 门正宇,等. 汽车制动磨损颗粒物排放特征与影响因素[C]. 2020中国汽车工程学会年会论文集(4). 中国汽车工程学会(China Society of Automotive Engineers), 2020: 798. |
LIU D Y, MA Y, MEN Z Y, et al. Emission characteristics and influential factors of vehicle brake wear particulate matter[C]. SAECCE 2020: 798. | |
22 | 马尧, 张喆, 刘晓东. 不同工况下汽车制动磨损颗粒物排放特征研究[J]. 中国汽车, 2023(2): 32-38. |
MA Y, ZHANG Z, LIU X D. Study on particulate emission characteristics of automobile braking wear under different test cycles[J]. China Auto, 2023(2): 32-38. | |
23 | 唐明. 温度对汽车制动材料摩擦学性能影响研究[D]. 福州: 福州大学, 2014. |
TANG M. The influence of temperature on the tribological performance of automotive brake materials[D]. Fuzhou: Fuzhou University, 2014. | |
24 | 肖叶龙, 成煜, 赵火平,等. 制动磨损源大气颗粒物排放的研究进展[J]. 摩擦学学报, 2022, 42(6): 1290-1304. |
XIAO Y L, CHENG Y, ZHAO H P, et al. Airborne brake wear particle emissions: a review[J]. Tribology, 2022, 42(6): 1290-1304. | |
25 | SANDERS P G, XU N, DALKA T M, et al. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests[J]. Environmental Science & Technology, 2003, 37(18): 4060-4069. |
26 | KWAK J, KIM H, LEE J, et al. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements[J]. Science of the Total Environment, 2013, 458-460: 273-282. |
27 | SONGKITTI W, SA-ARD-IAM S, PLENGSA-ARD C, et al. Effects of payloads on non-exhaust PM emissions from a hybrid electric vehicle during a braking sequence[J]. Aerosol and Air Quality Research, 2022, 22(7): 220150. |
28 | BELKACEM I, HELALI A, KHARDI S, et al. Investigations on vehicle non-exhaust particle emissions: real-time measurements[J]. International Journal of Environmental Science and Technology, 2022, 19(12): 11749-11762. |
29 | MATHISSEN M, GRIGORATOS T, LAHDE T, et al. Brake wear particle emissions of a passenger car measured on a chassis dynamometer[J]. Atmosphere, 2019, 10(9): 556. |
30 | WANG Y, LI J, YIN H, et al. A new method to assess vehicle airborne non-exhaust particles: principle, application and emission evaluation[J]. Applied Energy, 2023, 352: 121942. |
31 | LEE E S, SAHAY K, O’NEIL E, et al. Tracer-gas-integrated measurements of brake-wear particulate matter emissions from heavy-duty vehicles[J]. Environmental Science & Technology, 2023, 57(42): 15968-15978. |
32 | PARK J, JOO B, SEO H, et al. Analysis of wear induced particle emissions from brake pads during the worldwide harmonized light vehicles test procedure (WLTP)[J]. Wear, 2021, 466-467: 203539. |
33 | KIM S H, SHIM W, KWON S U, et al. The impact of composition in non-steel and low-steel type friction materials on airborne brake wear particulate emission[J]. Tribology Letters, 2020, 68(4): 118. |
34 | MATĚJKA V, PERRICONE G, VLČEK J, et al. Airborne wear particle emissions produced during the dyno bench tests with a slag containing semi-metallic brake pads[J]. Atmosphere, 2020, 11(11): 1220. |
35 | XIAO J K, XIAO S X, CHEN J, et al. Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h[J]. Tribology International, 2020, 150: 106357. |
36 | MAMAKOS A, ARNDT M, HESSE D, et al. Physical characterization of brake-wear particles in a PM10 dilution tunnel[J]. Atmosphere, 2019, 10(11): 639. |
37 | PERRICONE G, MATĔJKA V, ALEMANI M, et al. A test stand study on the volatile emissions of a passenger car brake assembly[J]. Atmosphere, 2019, 10(5): 263. |
38 | PLACHÁ D, VACULÍK M, MIKESKA M, et al. Release of volatile organic compounds by oxidative wear of automotive friction materials[J]. Wear, 2017, 376-377: 705-716. |
39 | HAGINO H, OYAMA M, SASAKI S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles[J]. Atmospheric Environment, 2016, 131: 269-278. |
40 | WAHLSTRÖM J, SÖDERBERG A, OLANDER L, et al. Airborne wear particles from passenger car disc brakes: a comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(2): 179-188. |
41 | UNECE. UN GTR No.24 - laboratory measurement of brake emissions for light-duty vehicles[EB/OL]. (2023-07-17)[2023-11-28]. https://unece.org/transport/documents/2023/07/standards/un-gtr-no24-laboratory-measurement-brake-emissions-light-duty. |
42 | ZHANG Q, FANG T, MEN Z, et al. Direct measurement of brake and tire wear particles based on real-world driving conditions[J]. Science of the Total Environment, 2024, 906: 167764. |
43 | SEO H, JOO B, PARK J, et al. Effect of disc material on particulate matter emissions during high-temperature braking[J]. Tribology International, 2021, 154: 106713. |
44 | SONG W, PARK J, SEO H, et al. Reduction of brake emission by optimizing the curing condition for brake pads using an artificial neural network[J]. Wear, 2023, 516-517: 204606. |
45 | PERRICONE G, WAHLSTRÖM J, OLOFSSON U. Towards a test stand for standardized measurements of the brake emissions[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(11): 1521-1528. |
46 | JOO B S, JARA D C, SEO H J, et al. Influences of the average molecular weight of phenolic resin and potassium titanate morphology on particulate emissions from brake linings[J]. Wear, 2020, 450-451: 203243. |
47 | JOO B S, CHANG Y H, SEO H J, et al. Effects of binder resin on tribological properties and particle emission of brake linings[J]. Wear, 2019, 434-435: 202995. |
48 | CHANG Y H, JOO B S, LEE S M, et al. Size effect of tire rubber particles on tribological properties of brake friction materials[J]. Wear, 2018, 394-395: 80-86. |
49 | PHILIPPE F, XIANG M, BRESSOT C, et al. Relevance of pin-on-disc and inertia dynamometer bench experiments for braking emission studies[J]. Journal of Physics: Conference Series, 2019, 1323(1): 012025. |
50 | ALEMANI M, WAHLSTRÖM J, OLOFSSON U. On the influence of car brake system parameters on particulate matter emissions[J]. Wear, 2018, 396-397: 67-74. |
51 | NOSKO O, VANHANEN J, OLOFSSON U. Emission of 1.3-10 nm airborne particles from brake materials[J]. Aerosol Science and Technology, 2017, 51(1): 91-96. |
52 | MOSLEH M, BLAU P J, DUMITRESCU D. Characteristics and morphology of wear particles from laboratory testing of disk brake materials[J]. Wear, 2004, 256(11-12): 1128-1134. |
53 | YAN R H, PENG X, LIN W, et al. Trends and challenges regarding the source-specific health risk of PM2.5 -bound metals in a chinese megacity from 2014 to 2020[J]. Environmental Science & Technology, 2022, 56(11): 6996-7005. |
54 | FU Z, WU Y, ZHAO S, et al. Emissions of multiple metals from vehicular brake linings wear in China, 1980-2020[J]. Science of The Total Environment, 2023, 889: 164380. |
55 | BEDDOWS D C S, HARRISON R M. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: dependence upon vehicle mass and implications for battery electric vehicles[J]. Atmospheric Environment, 2021, 244: 117886. |
56 | LIU Y, CHEN H, LI Y, et al. Exhaust and non-exhaust emissions from conventional and electric vehicles: a comparison of monetary impact values[J]. Journal of Cleaner Production, 2022, 331: 129965. |
57 | WOO S H, JANG H, LEE S B, et al. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: an experimental analysis[J]. Science of The Total Environment, 2022, 842: 156961. |
58 | BONDORF L, KÖHLER L, GREIN T, et al. Airborne brake wear emissions from a battery electric vehicle[J]. Atmosphere, 2023, 14(3): 488. |
59 | HICKS W, GREEN D C, BEEVERS S. Quantifying the change of brake wear particulate matter emissions through powertrain electrification in passenger vehicles[J]. Environmental Pollution, 2023, 336: 122400. |
60 | DIMOPOULOS EGGENSCHWILER P, SCHREIBER D, HABERSATTER J. Brake particle PN and PM emissions of a hybrid light duty vehicle measured on the chassis dynamometer[J]. Atmosphere, 2023, 14(5): 784. |
61 | LIU J, PENG J, MEN Z, et al. Brake wear-derived particles: single-particle mass spectral signatures and real-world emissions[J]. Environmental Science and Ecotechnology, 2023, 15: 100240. |
62 | RAHIMI M, BORTOLUZZI D, WAHLSTRÖM J. Input parameters for airborne brake wear emission simulations: a comprehensive review[J]. Atmosphere, 2021, 12(7): 871. |
63 | RAHIMI M, CANDEO S, DA LIO M, et al. A novel approach for brake emission estimation based on traffic microsimulation, vehicle system dynamics, and machine learning modeling[J]. Atmospheric Pollution Research, 2023, 14(10): 101872. |
64 | WEI N, MEN Z, REN C, et al. Applying machine learning to construct braking emission model for real-world road driving[J]. Environment International, 2022, 166: 107386. |
65 | WEI N, JIA Z, MEN Z, et al. Machine learning predicts emissions of brake wear PM2.5: model construction and interpretation[J]. Environmental Science & Technology Letters, 2022, 9(5): 352-358. |
66 | LIU Y, CHEN H, YIN C, et al. PM10 prediction for brake wear of passenger car during different test driving cycles[J]. Chemosphere, 2022, 305: 135481. |
67 | OLOFSSON U, OLANDER L, JANSSON A. Towards a model for the number of airborne particles generated from a sliding contact[J]. Wear, 2009, 267(12): 2252-2256. |
68 | HIRST J F A. The wear ofconditions metals under unlubricated conditions [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 236(1206): 397-410. |
69 | LIU Y, WU S, CHEN H, et al. Brake wear induced PM10 emissions during the world harmonised light-duty vehicle test procedure-brake cycle[J]. Journal of Cleaner Production, 2022, 361: 132278. |
70 | WAHLSTRÖM J, SÖDERBERG A, OLOFSSON U. A cellular automaton approach to numerically simulate the contact situation in disc brakes[J]. Tribology Letters, 2011, 42(3): 253-262. |
71 | PERRICONE G, ALEMANI M, WAHLSTRÖM J, et al. A proposed driving cycle for brake emissions investigation for test stand[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(1): 122-135. |
72 | MEN Z, ZHANG X, PENG J, et al. Determining factors and parameterization of brake wear particle emission[J]. Journal of Hazardous Materials, 2022, 434: 128856. |
73 | UNECE Wiki. PMP 29th session - transport - vehicle regulations[EB/OL]. (2014-01-8)[2023-11-28]. https://wiki.unece.org/display/trans/PMP+29th+session. |
74 | UNECE Wiki. PMP 35th session - transport - vehicle regulations[EB/OL]. (2015-03-05)[2023-11-28]. https://wiki.unece.org/display/trans/PMP+35th+session. |
75 | UNECE Wiki. PMP 41st session - transport - vehicle regulations[EB/OL]. (2016-10-13)[2023-11-28]. https://wiki.unece.org/display/trans/PMP+41st+session. |
76 | UNECE Wiki. GTR brake emissions - informal documents - transport - vehicle regulations[EB/OL]. (2022-07-11)[2023-11-28]. https://wiki.unece.org/display/trans/GTR+Brake+emissions+-+informal+documents. |
77 | GRIGORATOS T, AGUDELO C, GROCHOWICZ J, et al. Statistical assessment and temperature study from the interlaboratory application of the WLTP-brake cycle[J]. Atmosphere, 2020, 11(12): 1309. |
78 | MAMAKOS A, KOLBECK K, ARNDT M, et al. Particle emissions and disc temperature profiles from a commercial brake system tested on a dynamometer under real-world cycles[J]. Atmosphere, 2021, 12(3): 377. |
79 | HESSE D, HAMATSCHEK C, AUGSBURG K, et al. Testing of alternative disc brakes and friction materials regarding brake wear particle emissions and temperature behavior[J]. Atmosphere, 2021, 12(4): 436. |
80 | WAHID S M S. Automotive brake wear: a review[J]. Environmental Science and Pollution Research, 2018, 25(1): 174-180. |
81 | OLOFSSON U, OLANDER L, JANSSON A. A study of airborne wear particles generated from a sliding contact[J]. Journal of Tribology, 2009, 131(4): 044503. |
82 | BEJI A, DEBOUDT K, KHARDI S, et al. Non-exhaust particle emissions under various driving conditions: implications for sustainable mobility[J]. Transportation Research Part D: Transport and Environment, 2020, 81: 102290. |
83 | FEO M L, TORRE M, TRATZI P, et al. Laboratory and on-road testing for brake wear particle emissions: a review[J]. Environmental Science and Pollution Research, 2023, 30(45): 100282-100300. |
84 | THORPE A, HARRISON R M. Sources and properties of non-exhaust particulate matter from road traffic: a review[J]. Science of The Total Environment, 2008, 400(1-3): 270-282. |
85 | KUKUTSCHOVÁ J, MORAVEC P, TOMÁŠEK V, et al. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes[J]. Environmental Pollution, 2011, 159(4): 998-1006. |
86 | CHAN D, STACHOWIAK G W. Review of automotive brake friction materials[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(9): 953-966. |
87 | MENAPACE C, MANCINI A, FEDERICI M, et al. Characterization of airborne wear debris produced by brake pads pressed against HVOF-coated discs[J]. Friction, 2020, 8(2): 421-432. |
88 | CAI R, ZHANG J, NIE X, et al. Wear mechanism evolution on brake discs for reduced wear and particulate emissions[J]. Wear, 2020, 452-453: 203283. |
89 | ERIKSSON M, BERGMAN F, JACOBSON S. On the nature of tribological contact in automotive brakes[J]. Wear, 2002, 252(1-2): 26-36. |
90 | GARG B D, CADLE S H, MULAWA P A, et al. Brake wear particulate matter emissions[J]. Environmental Science & Technology, 2000, 34(21): 4463-4469. |
91 | SINHA A, ISCHIA G, MENAPACE C, et al. Experimental characterization protocols for wear products from disc brake materials[J]. Atmosphere, 2020, 11(10): 1102. |
92 | NOSKO O, ALEMANI M, OLOFSSON U. Temperature effect on emission of airborne wear particles from car brakes[C]. Europes Braking Conference & Exhibition, 2015. |
93 | KUKUTSCHOVÁ J, ROUBÍČEK V, MAŠLÁŇ M, et al. Wear performance and wear debris of semimetallic automotive brake materials[J]. Wear, 2010, 268(1-2): 86-93. |
94 | ALEMANI M, NOSKO O, METINOZ I, et al. A study on emission of airborne wear particles from car brake friction pairs[J]. SAE International Journal of Materials and Manufacturing, 2015, 9(1): 147-157. |
95 | WOO S H, KIM Y, LEE S, et al. Characteristics of brake wear particle (BWP) emissions under various test driving cycles[J]. Wear, 2021, 480-481: 203936. |
96 | WAHLSTRÖM J, OLANDER L, OLOFSSON U. A pin-on-disc study focusing on how different load levels affect the concentration and size distribution of airborne wear particles from the disc brake materials[J]. Tribology Letters, 2012, 46(2): 195-204. |
97 | UNECE.PMP_IWG_JARI_RegenBrake_ExtraHi_230427_v1[EB/OL]. [2023-11-28]. https://wiki.unece.org/display/trans/PMP+Web+Conference+27.04.2023. |
No related articles found! |
|