汽车工程 ›› 2024, Vol. 46 ›› Issue (5): 842-851.doi: 10.19562/j.chinasae.qcgc.2024.05.010

• • 上一篇    

车用燃料电池空气系统供气协同控制策略研究

胡宾飞1,2,周雅夫1,2,连静1,2(),李琳辉1,2   

  1. 1.工业装备结构分析国家重点实验室(大连理工大学),大连 116024
    2.大连理工大学汽车工程学院,大连 116024
  • 收稿日期:2023-08-11 修回日期:2023-11-02 出版日期:2024-05-25 发布日期:2024-05-17
  • 通讯作者: 连静 E-mail:lianjing@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(52172382)

Cooperative Control Strategy Research of Air Supply System for Vehicular Fuel Cell System

Binfei Hu1,2,Yafu Zhou1,2,Jing Lian1,2(),Linhui Li1,2   

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment (Dalian University of Technology), Dalian  116024
    2.School of Automotive Engineering, Dalian University of Technology, Dalian  116024
  • Received:2023-08-11 Revised:2023-11-02 Online:2024-05-25 Published:2024-05-17
  • Contact: Jing Lian E-mail:lianjing@dlut.edu.cn

摘要:

针对车用燃料电池系统的“氧饥饿”和压力波动影响其动态性能与使用寿命的问题,本文提出了一种基于过氧比补偿的空气系统流量与压力协同控制策略。首先,建立120 kW级的车用燃料电池空气系统模型,通过台架实验确定其参数,并根据实验数据拟合出其传递函数模型。其次,基于扩张状态观测器间接获取电堆阴极压力,采用前馈+PI建立串级控制中外环过氧比控制模型,用以修正目标流量。最后,采用反向解耦与自抗扰控制器对空气流量和压力解耦内环控制,对模型不确定性和外部扰动构成的总扰动进行估计和补偿。仿真与实验研究表明,提出的基于过氧比补偿的串级控制策略能够快速跟踪过氧比、提升电堆功率和精确地控制压力,同时证实了该方案的协同性和鲁棒性。这有助于提升车用燃料电池系统的动态性能,延长其使用寿命。

关键词: 车用燃料电池系统, 空气系统, 反向解耦, 自抗扰控制

Abstract:

For the problem that oxygen starvation and pressure fluctuation affect dynamic performance and service life of vehicular fuel cells system, in this paper, a cooperative control strategy of air system air mass flow and pressure based on oxygen excess ratio compensation is proposed. Firstly, a 120 kW model of vehicular fuel cells air system is established, with its parameters determined by bench experiments, and the transfer function model fitted according to the experimental data. Secondly, the cathode pressure of the stack is indirectly obtained based on the extended state observer, and the feedforward + PI is used to establish a cascade control model of the outer oxygen excess ratio in cascade control to correct the target flow. Furthermore, the inverted decoupling and active disturbance rejection controller are used to decouple the airflow and pressure from the inner loop control, and the total disturbance composed with the model uncertainty and external disturbance is estimated and compensated. Simulation and experimental studies show that the proposed cascade control strategy based on oxygen excess ratio compensation can quickly track the oxygen excess ratio, increase the stack power and accurately control the pressure, which proves the cooperativity and robustness of the strategy. It helps to improve the dynamic performance of the vehicular fuel cell system and extend its service life.

Key words: vehicular fuel cell system, air supply system, inverted decoupling, active disturbance rejection control