汽车工程 ›› 2024, Vol. 46 ›› Issue (7): 1228-1238.doi: 10.19562/j.chinasae.qcgc.2024.07.010

• • 上一篇    

基于三分图匹配的智能车辆多传感器数据融合

李路兴1,2,魏超1,2()   

  1. 1.北京理工大学机械与车辆学院,北京 100081
    2.特种车辆设计制造集成技术全国重点实验室,北京 100081
  • 收稿日期:2023-11-12 修回日期:2024-02-22 出版日期:2024-07-25 发布日期:2024-07-22
  • 通讯作者: 魏超 E-mail:weichaobit@163.com
  • 基金资助:
    青年科学基金项目(52002026)资助。

Multi-sensor Data Fusion for Intelligent Vehicles Based on Tripartite Graph Matching

Luxing Li1,2,Chao Wei1,2()   

  1. 1.School of Machinery and Vehicles,Beijing Institute of Technology,Beijing 100081
    2.National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology,Beijing 100081
  • Received:2023-11-12 Revised:2024-02-22 Online:2024-07-25 Published:2024-07-22
  • Contact: Chao Wei E-mail:weichaobit@163.com

摘要:

多传感器融合是提高智能车辆感知效果的有效途径,针对激光雷达、毫米波雷达和相机3种传感器数据匹配问题,传统匹配方法(如二分图匹配)无法获得高的精度,同时匹配鲁棒性差。为此,本文提出一种基于三分图匹配的智能车辆多传感器数据融合算法,将3种传感器数据匹配问题抽象为有权三分图匹配问题,通过拉格朗日松弛将原问题空间分解为子空间,进而利用代价矩阵模型确定子空间内的顶点和边的权重,结合感知误差模型和似然估计确定感知误差后验分布,最终利用拉格朗日乘子(Lagrange Multiplier,LM)模型完成数据匹配。最后利用nuScenes训练集和实车实验对本文所提匹配算法的效果进行了验证,在数据集上本文算法比常用算法在F1得分方面提升了7.2%,而在多种实车场景测试中,本文算法也同样具有较好的感知精度和鲁棒性。

关键词: 拉格朗日松弛, 多传感器融合, 感知误差模型, 三分图匹配

Abstract:

Multi-sensor fusion is an effective way to improve intelligent vehicle perception. For the data-matching problem of the three types of sensors of LiDAR, millimeter-wave radar, and camera, traditional methods such as bipartite graph matching can’t achieve high precision, with poor matching robustness. Therefore, a multi-sensor data fusion algorithm for intelligent vehicles based on tripartite graph matching is proposed in this paper. The problem of data matching of the three sensors is abstracted as a weighted tripartite graph-matching problem. By using Lagrange relaxation, the original problem space is decomposed into subspaces, the weights of vertices and edge inside which are determined then by the cost matrix model. Furthermore, combining the perceptual error model and likelihood estimation, the posterior distribution of perceptual errors is determined. Ultimately the Lagrange Multiplier (LM) model is used for data matching. Finally, the effectiveness of the proposed matching algorithm is validated by the nuScenes training dataset and real-world vehicle tests. On the dataset, the proposed algorithm improves F1 scores by 7.2% compared to common algorithms. In various real-world vehicle scenarios, the proposed algorithm shows excellent perceptual accuracy and robustness across.

Key words: Lagrange relaxation, multi-sensor fusion, perception error model, tripartite graph matching