汽车工程 ›› 2024, Vol. 46 ›› Issue (8): 1382-1393.doi: 10.19562/j.chinasae.qcgc.2024.08.005

• • 上一篇    

基于自然驾驶数据的交互轨迹基元表征与提取

李子睿1,2,王浩闻1,龚建伟1(),吕超1,赵晓聪3,王猛2   

  1. 1.北京理工大学机械与车辆学院,北京 100081
    2.德累斯顿工业大学,德国 01067
    3.同济大学,道路与交通工程教育部重点实验室,上海 201804
  • 收稿日期:2024-01-12 修回日期:2024-04-01 出版日期:2024-08-25 发布日期:2024-08-23
  • 通讯作者: 龚建伟 E-mail:gongjianwei@bit.edu.cn
  • 基金资助:
    国家自然科学基金(U1930206)

Interactive Trajectory Primitives Representation and Extraction Based on Naturalistic Driving Data

Zirui Li1,2,Haowen Wang1,Jianwei Gong1(),Lü Chao1,Xiaocong Zhao3,Meng Wang2   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing  100081
    2.TU Dresden,Germany  01067
    3.Tongji University,Key Laboratory of Road and Traffic Engineering,Ministry of Education,Shanghai  201804
  • Received:2024-01-12 Revised:2024-04-01 Online:2024-08-25 Published:2024-08-23
  • Contact: Jianwei Gong E-mail:gongjianwei@bit.edu.cn

摘要:

在共享道路空间中不同流向道路使用者间存在通行路径冲突,为规避碰撞风险,道路使用者须通过驾驶交互进行路权协商,从而消解潜在冲突。对交互行为的表述和建模,对于准确理解和预测动态环境具有重要意义。为此,本文提出一种以交互基元为分析单元的多车驾驶交互行为语义级表征和提取方法。首先,利用非参数贝叶斯方法对交互驾驶行为进行分割,得到具有显著行为模式的驾驶交互片段。然后,利用黏性层次狄利克雷-隐马尔可夫模型,从驾驶交互片段中提取得到交互基元。最后,对规范化处理后的交互基元进行无监督聚类,以获得驾驶交互场景的语义级行为特征。基于NGSIM高速公路数据集中20 797组多车交互数据的实证研究,本文提出的方法可提取并分析多个体参与的复杂交互场景,突破了已有研究中只针对两车交互场景构建交互基元的局限性,可支撑对多交通参与者交互的本质进行分析。实验结果表明,本文所提出的方法可以将连续的驾驶行为划分为离散的交互基元。且聚类划分结果可以与实际交互场景相对应,用于不同交互轨迹基元中车辆之间的交互行为特性分析。同时,该方法对于复杂场景下游驾驶任务具有提升作用。在车辆多步轨迹预测任务中,相比于基线方法,本文所提出的交互基元提取方法在与基线预测方法融合后可以将平均预测误差和终点预测误差分别降低19.3%和14.6%。

关键词: 交互行为, 轨迹基元, 非参数化贝叶斯方法, 无监督聚类

Abstract:

In shared road space, there are path conflicts between different road users moving in various directions. Road users must negotiate right-of-way through driving interactions to avoid collision risks, thus resolving potential conflicts. The description and modeling of interactive behaviors is crucial for accurately understanding and predicting the dynamic environment. Therefore, a semantic-level representation and extraction method for multi-vehicle interactive behaviors is proposed in this paper, taking interactive trajectory primitives as analysis units. Firstly, a nonparametric Bayesian method is utilized to segment interactive behaviors, obtaining interaction segments with significant behavior patterns. Then, the sticky hierarchical Dirichlet-Hidden Markov Model is employed to extract interaction primitives from these interaction segments. Finally, unsupervised clustering is applied to the normalized interaction primitives to obtain semantic-level behavioral features of interaction scenarios. An empirical study based on 20 797 pairs of multi-vehicle interaction data from the NGSIM highway dataset shows that the method proposed in this paper can extract and analyze complex interactive scenarios involving multiple participants, breaking through the limitation of existing research that only constructs interaction primitives for two vehicle interaction scenarios, and supporting the analysis of interaction among multiple traffic participants. The experimental results show that the proposed method can segment continuous driving behaviors into discrete interaction primitives. The clustering results correspond to actual interaction scenarios and can be used to characterize the interaction behaviors among vehicles in different interactive trajectory primitives. Furthermore, the method can enhance performance of downstream driving tasks in complex scenarios. In multi-step vehicle trajectory prediction, by integrating with baseline prediction methods, the proposed method can reduce the average prediction error and final position error by 19.3% and 14.6%, respectively, compared to baseline methods.

Key words: interactive behaviors, trajectory primitive, non-parametric Bayesian method, unsupervised clustering