1 |
WAGNER C. Asymptotic solutions for a multi-anticipative car-following model [J]. Physica A: Statistical Mechanics its Applications, 2012, 260(1-2): 218-224.
|
2 |
LI Z, GONG C, LU C, et al. Transferable driver behavior learning via distribution adaption in the lane change scenario [C]. 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019: 193-200.
|
3 |
XING Y, LV C, WANG H, et al. An ensemble deep learning approach for driver lane change intention inference [J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102615.
|
4 |
LU C, WANG H, LV C, et al. Learning driver-specific behavior for overtaking: a combined learning framework [J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6788-6802.
|
5 |
GADEPALLY V, KRISHNAMURTHY A, OZGUNER U. A framework for estimating driver decisions near intersections [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 637-646.
|
6 |
HAVLAK F, CAMPBELL M. Discrete and continuous, probabilistic anticipation for autonomous robots in urban environments [J]. IEEE Transactions on Robotics, 2013, 30(2): 461-474.
|
7 |
ZHANG W, WANG W. Learning V2V interactive driving patterns at signalized intersections [J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 151-166.
|
8 |
XING Y, LV C, WANG H, et al. Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges [J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4377-4390.
|
9 |
朱冰, 蒋渊德, 赵健, 等. 基于深度强化学习的车辆跟驰控制 [J]. 中国公路学报, 2019, 32(6): 53-60.
|
|
ZHU B, JIANG Y, ZHAO J, et al. A car-following control algorithm based on deep reinforcement learning[J]. China Journal of Highway and Transport, 2019, 32(6): 53-60.
|
10 |
赵健, 宋东鉴, 朱冰, 等. 基于自学习和监督学习混合驱动的智能汽车跟驰控制策略 [J]. 中国公路学报, 2022, 35(3): 55-65.
|
|
ZHAO J, SONG D, ZHU B, et al. Intelligent vehicle-following control strategy based on self-learning and supervised-learning hybrid-driven framework[J]. China Journal of Highway and Transport, 2022, 35(3): 55-65.
|
11 |
KOBER J, PETERS J. Policy search for motor primitives in robotics [C]. Advances in Neural Information Processing Systems, 2008: 849-856.
|
12 |
GOMEZ-GONZALEZ S, NEUMANN G, SCHöLKOPF B, et al. Adaptation and robust learning of probabilistic movement primitives [J]. IEEE Transactions on Robotics, 2020, 36(2): 366-379.
|
13 |
KOERT D, PAJARINEN J, SCHOTSCHNEIDER A, et al. Learning intention aware online adaptation of movement primitives [J]. IEEE Robotics, 2019, 4(4): 3719-3726.
|
14 |
LIOUTIKOV R, NEUMANN G, MAEDA G, et al. Learning movement primitive libraries through probabilistic segmentation [J]. The International Journal of Robotics Research, 2017, 36(8): 879-894.
|
15 |
WANG B, GONG J, CHEN H. Motion primitives representation, extraction and connection for automated vehicle motion planning applications [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3931-3945.
|
16 |
WANG W, ZHANG W, ZHU J, et al. Understanding V2V driving scenarios through traffic primitives [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 610-619.
|
17 |
ZHANG C, ZHU J, WANG W, et al. Spatiotemporal learning of multivehicle interaction patterns in lane-change scenarios [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6446-6459.
|
18 |
LI Z, LU C, YI Y, et al. A hierarchical framework for interactive behaviour prediction of heterogeneous traffic participants based on graph neural network [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 9102-9114.
|
19 |
田洪清, 丁峰, 郑讯佳, 等. 基于势能场虚拟力的智能网联车辆运动规划 [J]. 汽车工程, 2021, 43(4): 518-526.
|
|
TIAN H, DING F, ZHENG J, et al. Motion planning based on virtual force of potential field for intelligent connected vehicles[J]. Automotive Engineering, 2021, 43(4): 518-526.
|
20 |
PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data [J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262.
|
21 |
FOX E, SUDDERTH E, JORDAN M, et al. A sticky HDP-HMM with application to speaker diarization [J]. The Annals of Applied Statistics, 2011: 1020-1056.
|
22 |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 1468-1476.
|
23 |
KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD Dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems [C]. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018: 2118-2125.
|
24 |
ZHAN W, SUN L, WANG D, et al. INTERACTION Dataset: an INTERnational, adversarial and cooperative moTION dataset in interactive driving scenarios with semantic maps [J]. arXiv preprint arXiv:, 2019.
|
25 |
ETTINGER S, CHENG S, CAINE B, et al. Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 9710-9719.
|
26 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11618-11628.
|
27 |
朱冰, 孙宇航, 赵健, 等. 自动驾驶汽车测试场景基元自动提取方法 [J]. 汽车工程, 2022, 44(11): 1647-1655.
|
|
ZHU B, SUN Y, ZHAO J, et al. Automatic extraction method for autonomous vehicle test scene primitives[J]. Automotive Engineering, 2022, 44(11): 1647-1655.
|
28 |
FORNEY G D. The viterbi algorithm [J]. Proceedings of the IEEE, 1973, 61(3): 268-278.
|
29 |
TEH Y, JORDAN M, BEAL M, et al. Sharing clusters among related groups: hierarchical dirichlet processes [J]. Advances in Neural Information Processing Systems, 2004, 17: 1385-1392.
|
30 |
WANG W, XI J, ZHAO D. Driving style analysis using primitive driving patterns with Bayesian nonparametric approaches [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(8): 2986-2998.
|
31 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. arXiv preprint arXiv:, 2014.
|
32 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
33 |
ALTCHé F, DE LA FORTELLE A. An LSTM network for highway trajectory prediction [C]. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017: 353-359.
|