1 |
欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006, 28(4): 317-321.
|
|
OUYANG M G. China's energy-saving and new energy vehicle development strategy and countermeasures [J]. Automotive Engineering, 2006, 28(4):317-321
|
2 |
任军帅, 张英明, 谭江,等. 生物医用钛合金材料发展现状及趋势[J]. 材料导报: 纳米与新材料专辑, 2016, 30(2): 384-388.
|
|
REN J S, ZHANG Y M, TAN J, et al. Current status and trends in the development of titanium alloy materials for biomedical applications[J]. Materials Herald, 2016, 30(2): 384-388.
|
3 |
XU Z, PENG L, LAI X. Investigation on the roll-to-plate microforming of riblet features with the consideration of grain size effect[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109: 2055-2064.
|
4 |
GU X, WANG X, MA Y, et al. Investigation on grain size effect and forming mechanism of laser shock hydraulic microforming of copper foil[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 1049-1064.
|
5 |
VOLLERTSEN F, BIERMANN D, HANSEN H N, et al. Size effects in manufacturing of metallic components[J]. CIRP Annals, 2009, 58(2): 566-587.
|
6 |
RAJA C P, RAMESH T. Influence of size effects and its key issues during microforming and its associated processes–a review[J]. Engineering Science and Technology, an International Journal, 2021, 24(2): 556-570.
|
7 |
WANG C, WANG C, XU J, et al. Interactive effect of microstructure and cavity dimension on filling behavior in micro coining of pure nickel[J]. Scientific Reports, 2016, 6(1): 23895.
|
8 |
WANG H, GAO X, ZHU G, et al. Process analysis and hole type optimization of micro-groove multi-pass rolling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3): 2201-2212.
|
9 |
MOHAMMADTABAR N, BAKHSHI-JOOYBARI M, HOSSEINIPOUR S J, et al. Feasibility study of a double-step hydroforming process for fabrication of fuel cell bipolar plates with slotted interdigitated serpentine flow field[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85: 765-777.
|
10 |
BELALI-OWSIA M, BAKHSHI-JOOYBARI M, HOSSEINIPOUR S J, et al. A new process of forming metallic bipolar plates for PEM fuel cell with pin-type pattern[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77: 1281-1293.
|
11 |
HUNG J C, LIN C C. Fabrication of micro-flow channels for metallic bipolar plates by a high-pressure hydroforming apparatus[J]. Journal of Power Sources, 2012, 206: 179-184.
|
12 |
PALUMBO G, PICCININNI A. Numerical–experimental investigations on the manufacturing of an aluminium bipolar plate for proton exchange membrane fuel cells by warm hydroforming[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69: 731-742.
|
13 |
ELYASI M, GHADIKOLAEE H T, HOSSEINZADEH M. Fabrication of metallic bipolar plates in PEM fuel cell using semi-stamp rubber forming process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92: 765-776.
|
14 |
肖罡, 李时春, 谢志益, 等. 燃料电池 316L 不锈钢双极板流道激光熔覆成形工艺[J]. 机械工程材料, 2020, 44(11): 59-65.
|
|
XIAO G, LI S H, XIE Z Y, et al. Laser cladding molding process of 316L stainless steel bipolar plate runner for fuel cell[J]. Mechanical Engineering Materials, 2020, 44(11): 59-65.
|
15 |
LENG Y, MING P, YANG D, et al. Stainless steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes[J]. Journal of Power Sources, 2020, 451: 227783.
|
16 |
ANTUNES R A, OLIVEIRA M C L, ETT G, et al. Corrosion of metal bipolar plates for PEM fuel cells: a review[J]. International journal of hydrogen energy, 2010, 35(8): 3632-3647.
|
17 |
WOJTAS D, WIERZBANOWSKI K, CHULIST R, et al. Microstructure-strength relationship of ultrafine-grained titanium manufactured by unconventional severe plastic deformation process[J]. Journal of Alloys and Compounds, 2020, 837: 155576.
|
18 |
MODANLOO V, TALEBI-GHADIKOLAEE H, ALIMIRZALOO V, et al. Fracture prediction in the stamping of titanium bipolar plate for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5729-5739.
|
19 |
KIM M J, JIN C K, KANG C G. The effect of different forming parameters on the depth of bipolar-plate channels in static-and dynamic-load stamping[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229(11): 1976-1983.
|
20 |
NAKAGAKI N. The newly developed components for the fuel cell vehicle, mirai[C]. SAE Paper 2015-01-1174.
|
21 |
李金哲,王琪,林鹏,等.超薄钛双极板微流道精密成型工艺研究[J].现代制造工程,2022(9):9-14.
|
|
LI J Z, WANG Q, LIN P, et al. Research on microfluidic precision molding process of ultra-thin titanium bipolar plates[J]. Modern Manufacturing Engineering, 2022(9):9-14.
|
22 |
张彦杰,李渤渤,陶会发,等.纯钛燃料电池双极板软模成形工艺研究[J].精密成形工程,2022,14(4):109-114.
|
|
ZHANG Y J, LI B B, TAO H F, et al. Research on soft mold forming process for bipolar plates of pure titanium fuel cell[J]. Precision Molding Engineering, 2022,14(4):109-114.
|
23 |
ZHU C, XU J, YU H, et al. Hybrid forming process combining electromagnetic and quasi-static forming of ultra-thin titanium sheets: formability and mechanism[J]. International Journal of Machine Tools And Manufacture, 2022, 180: 103929.
|
24 |
DONG P, LI Z, FENG S, et al. Fabrication of titanium bipolar plates for proton exchange membrane fuel cells by uniform pressure electromagnetic forming[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38768-38781.
|
25 |
倪军,来新民,蓝树槐,等.基于辊压成形的质子交换膜燃料电池金属双极板制造方法:CN200610118899.2[P].CN1964114A.
|
|
NI J, LAI X M, LAN S H, et al. Fabrication method of metal bipolar plates for proton exchange membrane fuel cells based on roll forming: CN200610118899.2[P].CN1964114A.
|
26 |
李志鹏,徐竹田,彭林法,等.超薄钛板微流道多工步成形研究[J].机械设计与研究,2020,36(4):113-117.
|
|
LI Z P, XU Z T, PENG L F, et al. Research on microfluidic multi-step molding of ultra-thin titanium plates[J]. Mechanical Design and Research,2020,36(4):113-117.
|
27 |
苑世剑.现代液压成形技术[M].2版.北京:国防工业出版社,2016.
|
|
YUAN S J. Modern hydroforming technology [M]. 2nd ed.Beijing: Defense Industry Press,2016.
|
28 |
XU Z, LI Z, ZHANG R, et al. Fabrication of micro channels for titanium PEMFC bipolar plates by multistage forming process[J]. International Journal of Hydrogen Energy, 2020.DOI:10.1016/j.ijhydene.2020.07.230
|